Skip to main content

Radiation-induced bone and soft tissue sarcomas: Clinical aspects and molecular biology

  • Chapter
Soft Tissue Sarcomas: Present Achievements and Future Prospects

Part of the book series: Cancer Treatment and Research ((CTAR,volume 91))

Abstract

The development of treatment-induced cancer is one of the most devastating late complications of cancer therapy. Fortunately, these are quite uncommon in adult patients, that is, less than 1 in 200 at 20 years. In pediatric patients the risks are higher and may approach 1 in 5 at 20 years for patients with Ewing’s sarcoma and retinoblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meadows AT, Baum E, Fossati-Bellani F, et al. Second malignant neoplasms in children: An update from the late effects study group. J Clin Oncol 3:532–538, 1985.

    PubMed  CAS  Google Scholar 

  2. Cahan WG, Woodard HQ, Higinbotham NL, et al. Sarcoma arising in irradiated bone. Cancer 1:3–29, 1948.

    PubMed  CAS  Google Scholar 

  3. Marie P, Clunet J, Ravlot-LaPointe G. Contribution a l’etude du developement des tumeurs malignes sur le ulcers de roentgen. Bull Assoc Franc l’Etude Cancer 3:404–426, 1910.

    Google Scholar 

  4. Beck A. Zur Frage des Rontgensarkoms, zugleich ein Beitrag zur Pathogenese des Sarkoms. Munchen Med Wchnschr 69:623–624, 1922.

    Google Scholar 

  5. Laskin WB, Silverman TA, Enzinger FM. Postradiation soft tissue sarcomas. An analysis of 53 cases. Cancer 62:2330–2340, 1988.

    PubMed  CAS  Google Scholar 

  6. Perthes G. Zur Frage der Roentgentherapie des Carcinomas. Archiv fur Klinische Chirurgie (Berlin) 74:400–405, 1904.

    Google Scholar 

  7. Robinson E, Neugut A, Wylie P. Clinical aspects of post-irradiation sarcomas. J Natl Cancer Inst 80:233–240, 1988.

    PubMed  CAS  Google Scholar 

  8. Davidson T, Westbury G, Harmer CL. Radiation-induced soft tissue sarcoma. Br J Surg 73:308–309, 1986.

    PubMed  CAS  Google Scholar 

  9. Kim JH, Chu FCH, Woodward HQ, Huvos A. Radiation induced sarcomas of bone following therapeutic radiation. Int J Radiat Oncol Biol Phys 9:107–110, 1983.

    PubMed  CAS  Google Scholar 

  10. Mark RJ, Poen J, Tran LM, et al. Postirradiation sarcomas. Cancer 73:2653–2662.

    Google Scholar 

  11. Hatfield P, Schulz M. Postirradiation sarcoma. Radiology 96:593–602, 1970.

    PubMed  CAS  Google Scholar 

  12. Mindell ER, Shah NK, Webster JH. Postradiation sarcoma of bone and soft tissues. Orthop Clin North Am 8:821–834, 1977.

    PubMed  CAS  Google Scholar 

  13. Phillips TL, Sheline GE. Bone sarcomas following radiation therapy. Radiology 81:992–996, 1963.

    PubMed  CAS  Google Scholar 

  14. Sim FH, Cupps RE, Dahlin DC, Ivins JC. Postradiation sarcoma of bone. J Bone Joint Surg 54A:1479–1489, 1972.

    Google Scholar 

  15. Tountas AA, Fornasier VL, Harwood AR, Leung PHK. Postirradiation sarcoma of bone. Cancer 43:182–187, 1979.

    PubMed  CAS  Google Scholar 

  16. Senyszyn JJ, Johnston AD, Jacox HW, Chu FCH. Radiation-induced sarcoma after treatment of breast cancer. Cancer 26:394–403, 1970.

    PubMed  CAS  Google Scholar 

  17. Sabanas AO, Dahlin DC, Childs DS, Ivins JC. Postradiation sarcoma of bone. Cancer 9:528–542, 1956.

    PubMed  CAS  Google Scholar 

  18. Arlen M, Higinbotham NL, Huvos AG, et al. Radiation-induced sarcoma of bone. Cancer 28:1087–1099, 1971.

    PubMed  CAS  Google Scholar 

  19. Huvos AG, Woodard HQ, Heilweil M. Postradiation malignant fibrous histiocytoma of bone. Am J Surg Pathol 10:9–18, 1986.

    PubMed  CAS  Google Scholar 

  20. Tucker MA, D’Angio GJ, Boice JD, et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317:588–593, 1987.

    PubMed  CAS  Google Scholar 

  21. Taghian A, De-Vathaire F, Terrier P, et al. Long-term risk of sarcoma following radiation treatment for breast cancer. Int J Radiat Oncol Biol Phys 21:361–367, 1991.

    PubMed  CAS  Google Scholar 

  22. Knudson AG. Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823, 1971.

    PubMed  Google Scholar 

  23. Roarty JD, McLean IW, Zimmerman LE. Incidence of second neoplasms in patients with bilateral retinobalstoma. Ophthalmology 91:1583–1587, 1988.

    Google Scholar 

  24. Winther J, Olsen JH, De-Nully Brown P. Risk of nonocular cancer among retinoblastoma patients and their parents. Cancer 62:1458–1462, 1988.

    PubMed  CAS  Google Scholar 

  25. Der-Kindren DJ, Doten JW, Nagelkerke NJD, et al. Non-ocular cancer in patients with hereditary retinoblastoma and their relatives. Int J Cancer 41:499–504, 1988.

    Google Scholar 

  26. Abramson DA, Ellsworth RM, Kitchin FD, Tung G. Second nonocular tumors in retinoblastoma survivors. Ophthalmology 91:1351–1355, 1984.

    PubMed  CAS  Google Scholar 

  27. Draper GJ, Sanders BM, Kingston JE. Second primary neoplasms in patients with retinoblastoma. Br J Cancer 53:661–671, 1986.

    PubMed  CAS  Google Scholar 

  28. Tucker MA, D’Angio GJ, Boice JD, et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317:588–593, 1987.

    PubMed  CAS  Google Scholar 

  29. Eng C, Li FP, Abramson DH, et al. Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst 85:1121–1128, 1993.

    PubMed  CAS  Google Scholar 

  30. Li FP, Fraumeni JF. Soft-tissue sarcomas, breast cancer, and other neoplasms. Ann Int Med 71:747–752, 1969.30.

    PubMed  CAS  Google Scholar 

  31. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238, 1990.

    PubMed  CAS  Google Scholar 

  32. Malkin D, Jolly KW, Barbier N, et al. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med 326:1309–1315, 1992.

    PubMed  CAS  Google Scholar 

  33. Weinberg RA. Oncogenes and tumor suppressor genes [review]. CA Cancer J Clin 44:160–170, 1994.

    PubMed  CAS  Google Scholar 

  34. Sankaranarayanan K, Chakraborty R. Cancer predisposition, radiosensitivity and the risk of radiation-induced cancers. I. Background. Radiat Res 143:121–143, 1995.

    PubMed  CAS  Google Scholar 

  35. Swift M, Morrelll D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836, 1991.

    PubMed  CAS  Google Scholar 

  36. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753, 1995.

    PubMed  CAS  Google Scholar 

  37. Parker RG. Radiation-induced cancer as a factor in clinical decision making. Int J Radiat Oncol Biol Phys 18:993–1000, 1990.

    PubMed  CAS  Google Scholar 

  38. Detourmignies L, Castaigne S, Stoppa AM, et al. Therapy-related acute promyelocytic leukemia: A report on 16 cases. J Clin Oncol 10:1430–1435, 1992.

    PubMed  CAS  Google Scholar 

  39. Winick NJ, McKenna RW, Shuster JJ, et al. Secondary acute myeloid leukemia in children with acute lymphoblastic leukemia treated with etoposide. J Clin Oncol 11:209–217, 1993.

    PubMed  CAS  Google Scholar 

  40. Pui CH, Ribeiro RC, Hancock ML, et al. Acute myeloid leukemia in children treated in epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 325:1682–1687, 1991.

    PubMed  CAS  Google Scholar 

  41. Van Leeuwen FE, Chorus AMJ, Van den Belt-Dusebout AS, et al. Leukemia risk following Hodgkin’s disease: Relation to cumulative dose of alkylating agents, treatment with teniposide combinations, number of episodes of chemotherapy, and bone marrow damage. J Clin Oncol 12:1063–1073, 1994.

    PubMed  Google Scholar 

  42. Tucker MA, Coleman CN, Cox RS, et al. Risk of second cancers after treatment for Hodgkin’s disease. N Engl J Med 318:76–81, 1988.

    PubMed  CAS  Google Scholar 

  43. Lowsky R, Lipton J, Fyles G, et al. Secondary malignancies after bone marrow transplantation in adults. J Clin Oncol 12:2187–2192, 1994.

    PubMed  CAS  Google Scholar 

  44. Cimino G, Papa G, Tura S, et al. Second primary cancer following Hodgkin’s: Updated results of an Italian multicentric study. J Clin Oncol 9:432–437, 1991.

    PubMed  CAS  Google Scholar 

  45. Weatherby RP, Dahlin DC, Ivins JC. Postradiation sarcoma of bone. Review of 78 Mayo Clinic cases. Mayo Clin Proc 56:294–306, 1981.

    PubMed  CAS  Google Scholar 

  46. Wiklund TA, Blomqvist CP, Raty J, et al. Postirradiation sarcoma. Cancer 68:524–531, 1991.

    PubMed  CAS  Google Scholar 

  47. Davidson T, Westbury G, Harmer CL. Radiation-induced soft-tissue sarcoma. Br J Surg 73:308–309, 1986.

    PubMed  CAS  Google Scholar 

  48. Huvos AG, Woodard HQ, Cahan WG, et al. Postradiation osteogenic sarcoma of bone and soft tissues. Cancer 55:1244–1255, 1985.

    PubMed  CAS  Google Scholar 

  49. Stratton MR, Moss S, Warren W, et al. Mutation of the p53 gene in human soft tissue sarcomas: Association with abnormalities of the RB1 gene. Oncogene 5:1297–1301, 1990.

    PubMed  CAS  Google Scholar 

  50. Wunder JS, Czitrom AA, Kandel R, Andrulis IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcoma. J Natl Cancer Inst 83:194–200, 1991.

    PubMed  CAS  Google Scholar 

  51. Toguchida J, Ishizaki K, Sasaki MS, et al. Chromosomal reorganization for the expression of recessive mutation of retinoblastoma susceptibility gene in the development of osteosarcoma. Cancer Res 48:3939–3943, 1988.

    PubMed  CAS  Google Scholar 

  52. Reissmann PT, Simon MA, Lee WH, Slamon DJ. Studies of the retinoblastoma gene in human sarcomas. Oncogene 4:831–843, 1989.

    Google Scholar 

  53. Cance WG, Brennan MF, Dudas ME, et al. Altered expression of the retinoblastoma gene product in human sarcomas. N Engl J Med 323:1457–1462, 1990.

    PubMed  CAS  Google Scholar 

  54. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 253:49–53, 1991.

    PubMed  CAS  Google Scholar 

  55. Frebourg T, Friend SH. The importance of p53 gene alterations in human cancer: Is there more than circumstantial evidence? J Natl Cancer Inst 85:1554–1557, 1993.

    PubMed  CAS  Google Scholar 

  56. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 35:453–456, 1991.

    Google Scholar 

  57. Chandar N, Billig B, McMaster J, Novak J. Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer 65:208–214, 1992.

    PubMed  CAS  Google Scholar 

  58. Strauss PG, Mitreiter K, Zitzelsberger H, et al. Elevated p53 RNA expression correlates with incomplete osteogenic differentiation of radiation-induced murine osteosarcomas. Int J Cancer 50:252–258, 1992.

    PubMed  CAS  Google Scholar 

  59. Brachman DG, Hallahan DE, Beckett MA, et al. p53 gene mutations and abnormal retinoblastoma protein in radiation-induced human sarcomas. Cancer Res 51:6393–6396, 1991.

    PubMed  CAS  Google Scholar 

  60. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221, 1992.

    PubMed  CAS  Google Scholar 

  61. Lee JM, Abrahamson JLA, Kandel R, et al. Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice. Oncogene 9:3731–3736, 1994.

    PubMed  CAS  Google Scholar 

  62. Malkin D. p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 66:83–92, 1993.

    PubMed  CAS  Google Scholar 

  63. Levine AJ. The p53 tumor-suppressor gene. N Engl J Med 326:1350–1352, 1992.

    PubMed  CAS  Google Scholar 

  64. Toguchida J, Yamaguchi T, Ritchie B, et al. Mutation spectrum of the p53 gene in bone and soft tissue sarcomas. Cancer Res 52:6194–6199, 1992.

    PubMed  CAS  Google Scholar 

  65. Andreassen A, Oyjord T, Hovig E, et al. p53 abnormalities in different subtypes of human sarcomas. Cancer Res 53:468–471, 1993.

    PubMed  CAS  Google Scholar 

  66. Mulligan LM. Matlashewski GH, Scrable HJ, Cavenee WK. Mechanisms of p53 loss in human sarcomas. Proc Natl Acad Sci USA 87:5863–5867, 1990.

    PubMed  CAS  Google Scholar 

  67. Masuda H, Miller C, Koeffler HP, et al. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 84:7716–7719, 1987.

    PubMed  CAS  Google Scholar 

  68. Miller CW, Aslo A, Tsay C, et al. Frequency and structure of p53 rearrangement in human osteosarcoma. Cancer Res 50:7950–7954, 1990.

    PubMed  CAS  Google Scholar 

  69. Smith ML, Chen IT, Zhan Q, et al. Interaction of the p53-regulated protein Gadd 45 with proliferating cell nuclear antigen. Science 266:1376–1380, 1994.

    PubMed  CAS  Google Scholar 

  70. Symonds H, Krall L, Remington L, et al. p53 dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703–711, 1994.

    PubMed  CAS  Google Scholar 

  71. Lowe SW, Schmitt EM, Smith SW, et al. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849, 1993.

    PubMed  CAS  Google Scholar 

  72. Clarke AR, Purdie CA, Harrison DJ, et al. Thymocyte apoptosis induced by p53 dependent and independent pathways. Nature 362:849–852, 1993.

    PubMed  CAS  Google Scholar 

  73. Bond JA, Wyllie FS, Wynfort-Thomas D. Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9:1885–1889, 1994.

    PubMed  CAS  Google Scholar 

  74. Friedman PH, Chen X, Bargonetti J, Prives C. The p53 protein is an unusualy shaped tetramer that binds directly to DNA. Proc Natl Acad Sci USA 90:3319–3323, 1993.

    PubMed  CAS  Google Scholar 

  75. Srivastava S, Wang S, Tong YA, et al. Dominant negative effect of a germ-line mutant p53: A step fostering tumorigenesis. Cancer Res 53:4452–4455, 1993.

    PubMed  CAS  Google Scholar 

  76. Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65:765–774, 1991.

    PubMed  CAS  Google Scholar 

  77. Unger T, Nau MM, Segal S, Minna JD. p53: A transdominant regulator of transcription whose function is abated by mutations occurring in human cancer. EMBO J 11:1383–1390, 1992.

    PubMed  CAS  Google Scholar 

  78. Gerwin BI, Spillare E, Forrester K, et al. Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor β1 Proc Natl Acad Sci USA 89:2759–2763, 1992.

    PubMed  CAS  Google Scholar 

  79. Srivastava S, Wang S, Tong YA, et al. Several mutant p53 proteins detected in cancer-prone families with Li-Fraumeni syndrome exhibit transdominant effects on the biochemical properties of the wild-type 53. Oncogene 8:2449–2456, 1993.

    PubMed  CAS  Google Scholar 

  80. Vogelstein B, Kinzier KW. Carcinogens leave fingerprints. Nature 355:209–210, 1992.

    PubMed  CAS  Google Scholar 

  81. Brash DE, Rudolph JA, Simon JA, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128, 1991.

    PubMed  CAS  Google Scholar 

  82. Kanjilal S, Pierceall WE, Cummings KK, et al. High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: Evidence for strand bias and tumor heterogeneity. Cancer Res 53:2961–2964, 1993.

    PubMed  CAS  Google Scholar 

  83. Taylor JA, Watson MA, Devereux TR, et al. p53 mutation hotspot in radon-associated lung cancer. Lancet 343:86–87, 1994.

    PubMed  CAS  Google Scholar 

  84. Hollstein M, Marion MJ, Lehman T, et al. p53 mutations at A:T base pairs in angiosarcomas of vinyl chloride-exposed factory workers. Carcinogen 15:1–3, 1994.

    CAS  Google Scholar 

  85. Aguilar F, Hussain SP, Cerutti P. Aflatoxin B1 induced the transversion of G→T in condon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA 90:8586–8590, 1993.

    PubMed  CAS  Google Scholar 

  86. Jego M, Thomas G, Hamelin R. Short direct repeats flanking deletions, and duplicating insertions in p53 gene in human cancers. Oncogene 8:209–213, 1993.

    PubMed  CAS  Google Scholar 

  87. Leach FS, Tokino T, Meltzer P, et al. p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 53:2231–2234, 1993.

    PubMed  CAS  Google Scholar 

  88. Wazer DE, Chu Q, Liu XL, et al. Los of p53 protein during radiation transformation of primary human mammary epithelial cells. Mol Cell Biol 14:2468–2478, 1994.

    PubMed  CAS  Google Scholar 

  89. Hutchinson F. Molecular biology of mutagenesis of mammalian cells by ionizing radiation. Semin Cancer Biol 4:85–92, 1993.

    PubMed  CAS  Google Scholar 

  90. Breimer LH. Ionizing radiation-induced mutagenesis. Br J Cancer 57:6–18, 1988.

    PubMed  CAS  Google Scholar 

  91. Nelson SL, Giver CR, Grosovsky AJ, Spectrum of X-ray — induced mutations in the human hprt gene. Carcinogen 15:495–502, 1994.

    CAS  Google Scholar 

  92. Okinaka RT, Anzick SL, Oiler A, Thilly WG. Analysis of large X-ray-induced mutant populations by denaturing gradient gel electrophoresis. Radiat Res 135:212–221, 1993.

    PubMed  CAS  Google Scholar 

  93. Denault CM, Skopek TR, Liber HL. The effects of hypoxia and cysteamine on x-ray mutagenesis in human cells. II. hprt mRNA expression and cDNA sequence analysis of induced mutants. Radiat Res 136:271–279, 1993.

    PubMed  CAS  Google Scholar 

  94. Winegar RA, Lutze LH, Hamer JD, et al. Radiation-induced point mutations, deletions and micronuclei in lacI transgenic mice. Mut Res 307:479–487, 1994.

    CAS  Google Scholar 

  95. Phillips JW, Morgan WF. Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosone. Mol Cell Biol 14:5794, 5803, 1994.

    PubMed  CAS  Google Scholar 

  96. Lee JM, Abrahamson LA, Kandel R, et al. Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice. Oncogene 9:3731–3736, 1994.

    PubMed  CAS  Google Scholar 

  97. Laviguer A, Maltby V, Mock D, et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 9:3982–3991, 1989.

    Google Scholar 

  98. Kemp CJ, Wheldon T, Balmain A. p53-deficient mice are extremely susceptible to radiationinduced tumorigenesis. Nature Genet 8:66–69, 1994.

    PubMed  CAS  Google Scholar 

  99. Challeton C, Bounacer A, DuVillard JA, et al. Pattern of ras and gsp oncogene mutations in radiation-associated human thyroid tumors. Oncogene 11:601–603, 1995.

    PubMed  CAS  Google Scholar 

  100. Ishihara H, Yoshida K, Nemoto K, et al. Constitutive overexpression of the c-fos gene in radiation-induced granulocytic leukemia in mice. Radiat Res 135:394–399, 1993.

    PubMed  CAS  Google Scholar 

  101. Sloan SR, Newcomb EW, Pellicer A. Neutron radiation can activate K-ras via a point mutations in codon 146 and induces a different spectrum of ras mutations than does gamma radiation. Mol Cell Biol 10:405–408, 1990.

    PubMed  CAS  Google Scholar 

  102. Wright PA, Williams ED, Lemoine NR, Wynford-Thomas D, Radiation-associated and’ spontaneous’ human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene 6:471–473, 1991.

    PubMed  CAS  Google Scholar 

  103. Sawey MJ, Hood AT, Burns FJ, Garte SJ. Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation. Mol Cell Biol 7:932–935, 1987.

    PubMed  CAS  Google Scholar 

  104. Ito T, Seyama T, Iwamoto KS, et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res 53:2940–2943, 1993.

    PubMed  CAS  Google Scholar 

  105. Garte SJ, Burns FJ, Ashkenazi-Kimmel T, et al. Amplification of the c-myc oncogene during progression of radiation-induced rat toxin tumors. Cancer Res 50:3073–3077, 1990.

    PubMed  CAS  Google Scholar 

  106. Felber M, Burns FJ, Garte SJ. Amplification of c-myc oncogene in radiation-induced rat skin tumors as a function of linear energy transfer and dose. Radiat Res 131:297–301, 1992.

    PubMed  CAS  Google Scholar 

  107. Sturm SA, Strauss PG, Adolph S, et al. Amplification and rearrangement of c-myc radiationinduced murine osteosarcomas. Cancer Res 50:4146–4153, 1990.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spiro, I.J., Suit, H.D. (1997). Radiation-induced bone and soft tissue sarcomas: Clinical aspects and molecular biology. In: Verweij, J., Pinedo, H.M., Suit, H.D. (eds) Soft Tissue Sarcomas: Present Achievements and Future Prospects. Cancer Treatment and Research, vol 91. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6121-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6121-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7805-1

  • Online ISBN: 978-1-4615-6121-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics