Skip to main content

Rapid isolation of muscle and heart mitochondria, the lability of oxidative phosphorylation and attempts to stabilize the process in vitro by taurine, carnitine and other compounds

  • Chapter
Detection of Mitochondrial Diseases

Abstract

We modified the isolation procedure of muscle and heart mitochondria. In human muscle, this resulted in a 3.4 fold higher yield of better coupled mitochondria in half the isolation time. In a preparation from rat muscle we studied factors that affected the stability of oxidative phosphorylation (oxphos) and found that it decreased by shaking the preparation on a Vortex machine, by exposure to light and by an increase in storage temperature. The decay was found to be different for each substrate tested. The oxidation of ascorbate was most stable and less sensitive to the treatments.

When mitochondria were stored in the dark and the cold, the decrease in oxidative phosphorylation followed first order kinetics. In individual preparations of muscle and heart mitochondria, protection of oxidative phosphorylation was found by adding candidate stabilizers, such as desferrioxamine, lazaroids, taurine, carnitine, phosphocreatine, N-acetylcysteine, Trolox-C and ruthenium red, implying a role for reactive oxygen species and calcium-ions in the in vitro damage at low temperature to oxidative phosphorylation.

In heart mitochondria oxphos with pyruvate and palmitoylcarnitine was most labile followed by glutamate, succinate and ascorbate. We studied the effect of taurine, hypotaurine, carnitine, and desferrioxamine on the decay of oxphos with these substrates. 1 mM taurine (n = 6) caused a significant protection of oxphos with pyruvate, glutamate and palmitoylcarnitine, but not with the other substrates. 5 mM L-carnitine (n = 6), 1 mM hypotaurine (n = 3) and 0.1 mM desferrioxamine (n = 3) did not protect oxphos with any of the substrates at a significant level.

These experiments were undertaken in the hope that the in vitro stabilizers can be used in future treatment of patients with defects in oxidative phosphorylation. (Mol Cell Biochem 174: 61-66, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookelman H, Trijbels JMF, Sengers RCA, Janssen AJM: Measurement of cytochromes in human skeletal muscle mitochondria, isolated from fresh and frozen stored muscle specimens. Biochem Med 19: 366–373, 1978

    Article  PubMed  CAS  Google Scholar 

  2. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B: A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical and morphological study. J Clin Invest 41: 1776–1804, 1962

    Article  PubMed  CAS  Google Scholar 

  3. Dow DS: The isolation of skeletal muscle mitochondria showing tight coupling. High respiratory indices, and differential adenosine triphos-phatase activities. Biochemistry 6: 2915–2922, 1967

    Article  PubMed  CAS  Google Scholar 

  4. Lowenstein J, Scholte HR, Wit-Peeters EM: A rapid and simple procedure to deplete rat-liver mitochondria of lysosomal activity. Biochim Biophys Acta 223: 432–436, 1970

    Article  CAS  Google Scholar 

  5. De Duve C, Berthet J: Reproducibility of differential centrifugation experiments in tissue fractionation. Nature 172: 1142, 1953

    Article  Google Scholar 

  6. Srere PA. Citrate synthase. Meth Enzymol 13: 3–26, 1969

    Article  CAS  Google Scholar 

  7. Jansen TC, Lafeber HN, Visser HKA, Kwant G, Oeseburg B, Zijlstra WG: Construction and performance of a new catheter-tip oxygen electrode. Med Biol Eng Comput 16: 274–277, 1978

    Article  PubMed  CAS  Google Scholar 

  8. Scholte HR, Busch HFM, Luyt-Houwen IEM: Functional disorders of mitochondria in muscular diseases-respiratory chain phosphoryla-tion-the carnitine system. In: HFM Busch, FGI Jennekens, HR Scholte (eds). Mitochondria and Muscular Diseases. Mefar b.v., Beetsters-zwaag, The Netherlands, 1981, pp 133–145

    Google Scholar 

  9. Barth PG, Scholte HR, Berden JA, Van Der Klei-Van Moorsei JM, Luyt-Houwen IEM, Van’t Veer-Korthof ET, Van Der Harten JJ, Sobotka-Plojhar MA: An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62: 327–355, 1983

    Article  PubMed  CAS  Google Scholar 

  10. Scholte HR, Agsteribbe E, Busch HFM, Hoogenraad TU, Jennekens FGI, van Linge B, Luyt-Houwen IEM, Ross JD, Ruiters MHJ, Verduin MHM: Oxidative phosphorylation in human muscle in patients with ocular myopathy and after general anaesthesia. Biochim Biophys Acta 1018:211–216, 1990

    Article  PubMed  CAS  Google Scholar 

  11. Di Lisa F, Bobyleva-Guarriero V, Jocelyn P, Toninello A, Siliprandi N: Stabilizing action of carnitine on energy linked processes in rat liver mitochondria. Biochem Biophys Res Commun 131: 968–973, 1985

    Article  PubMed  Google Scholar 

  12. Van der Kraaij AMM, Mostert LJ, Van Eijk HG, Koster JF: Iron-load increases the susceptibility of rat hearts to oxygen reperfusion damage. Protection by the antioxidant (+)-cyanidanol-3 and deferoxamine. Circulation 78: 442–449

    Google Scholar 

  13. Van Jaarsveld H, Kuyt JM, Alberts DW: The protective effect of desferal on rat myocardial mitochondria is not prolonged after withdrawal of desferal. Basic Res Cardiol 87: 47–53, 1992

    Article  PubMed  Google Scholar 

  14. Dennerlein JA, Lang GE, Stahnke K, Kleihauer E, Lang GK: Okulare Befunde bei Desferaltherapie. Ophthalmologie 92: 38–42, 1995

    CAS  Google Scholar 

  15. Cianciulli P, Sollecito D, Sorrentino F, Forte L, Gilardi E, Massa A, Papa G, Carta S: Early detection of nephrotoxic effects in thalassemic patients receiving desferrioxamine therapie. Kidney Int 46: 467–470, 1994

    Article  PubMed  CAS  Google Scholar 

  16. Huxtable RJ: Physiological actions of taurine. Physiol Rev 72: 101–163, 1992

    PubMed  CAS  Google Scholar 

  17. Huxtable RJ, Michalk D (eds): Taurine in health and disease. Adv Exp Med Biol 359: 1–458, 1994

    Google Scholar 

  18. Hall ED, McCall JM: Antioxidant action of lazaroids. Meth Enzymol 234: 548–555, 1994

    Article  PubMed  CAS  Google Scholar 

  19. Pakala R, Pakala R, Benedict CR: Novel 21-aminosteroidlike compounds prevent iron-induced free radical-mediated injury to vascular endothelial cells. J Cardiovasc Pharmacol 25: 871–879, 1995

    Article  PubMed  CAS  Google Scholar 

  20. Bakker HD, Scholte HR, Jeneson JAL: Vitamin E in a mitochondrial myopathy with proliferating mitochondria. The Lancet 342: 175–176, 1993

    Article  CAS  Google Scholar 

  21. Penn AMW, Lee JWK, Thuillier P, Wagner M, Maclure KM, Renard MR, Hall LD, Kennaway NG: MELAS syndrome with mitochondrial tRNALeu(UUR) mutation: correlation of clinical state, nerve conduction, and muscle 31P magnetic resonance spectroscopy during treatment with nicotinamide and riboflavin. Neurology 42: 2147–2152, 1992

    Article  PubMed  CAS  Google Scholar 

  22. Peterson PL: The treatment of mitochondrial myopathies and encepha-lopathies. Biochim Biophys Acta 1271: 275–280, 1995

    Article  PubMed  CAS  Google Scholar 

  23. Przyrembel H: Therapy of mitochondrial disorders. J Inher Metab Dis 10,Suppl 1:129–146, 1987

    Article  PubMed  Google Scholar 

  24. Scholte HR, Busch HFM, Bakker HD, Bogaard JM, Luyt-Houwen IEM, Kuyt LP: Riboflavin-responsive complex I deficiency. Biochim Biophys Acta 1271: 75–83, 1995

    Article  PubMed  Google Scholar 

  25. Kraft A, v. Wersebe O, Neudecker S, Hein W, Haunschild M, Skladal D, Sperl W, Gnaiger E, Margreiter R, Zierz S, Gellerich FN: Long term stability of mitochondrial functions in human skeletal muscle fibers during cold storage. J Mol Med 73: B45, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scholte, H.R., Yu, Y., Ross, J.D., Oosterkamp, I.I., Boonman, A.M.C., Busch, F.M. (1997). Rapid isolation of muscle and heart mitochondria, the lability of oxidative phosphorylation and attempts to stabilize the process in vitro by taurine, carnitine and other compounds. In: Gellerich, F.N., Zierz, S. (eds) Detection of Mitochondrial Diseases. Developments in Molecular and Cellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6111-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6111-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7800-6

  • Online ISBN: 978-1-4615-6111-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics