Skip to main content

The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases

  • Chapter
Detection of Mitochondrial Diseases

Abstract

Excitotoxicity, mitochondrial dysfunction and free radical induced oxidative damage have been implicated in the pathogenesis of several different neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Much of the interest in the association of neurodegeneration with mitochondrial dysfunction and oxidative damage emerged from animal studies using mitochondrial toxins. Within mitochondria l-methyl-4-phenylpyridinium (MPP+), the active metabolite of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP), acts to inhibit NADH-coenzyme Q reductase (complex I) of the electron transport chain. MPTP produces Parkinsonism in humans, primates, and mice. Similarly, lesions produced by the reversible inhibitor of succinate dehydrogenase (complex II), malonate, and the irreversible inhibitor, 3-nitropropionic acid (3-NP), closely resemble the histologic, neurochemical and clinical features of HD in both rats and non-human primates. The interruption of oxidative phosphorylation results in decreased levels of ATP. A consequence is partial neuronal depolarization and secondary activation of voltage-dependent NMD A receptors, which may result in excitotoxic neuronal cell death (secondary excitotoxicity). The increase in intracellular Ca2+ concentration leads to an actiation of Ca2+ dependent enzymes, including the constitutive neuronal nitric oxide synthase (cnNOS) which produces NO-. NO- may react with the Superoxide anion to form peroxynitrite. We show that systemic administration of 7-nitroindazole (7-NI), a relatively specific inhibitor of cnNOS in vivo, attenuates lesions produced by striatal malonate injections or systemic treatment with 3-NP or MPTP. Furthermore 7-NI attenuated increases in lactate production and hydroxyl radical and 3-nitrotyrosine generation in vivo, which may be a consequence of peroxynitrite formation. Our results suggest that neuronal nitric oxide synthase inhibitors may be useful in the treatment of neurologic diseases in which excitotoxic mechanisms play a role. (Mol Cell Biochem 174: 193–197, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beal MF: Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–366, 1995

    Article  PubMed  CAS  Google Scholar 

  2. Beal MF, Hyman BT, Koroshetz W: Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative disease? TINS 16: 125–131, 1993

    PubMed  CAS  Google Scholar 

  3. Brouillet E, Beal MF: NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. NeuroReport 4: 387–390, 1993

    Article  PubMed  CAS  Google Scholar 

  4. Lange KW, Loschmann PA, Sofic E, Burg M, Horowski R, Kalveram KT, Wachtel H, Riederer P: The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmiedebergs Archives of Pharmacology 348: 586–592, 1993

    Article  CAS  Google Scholar 

  5. Zuddas A, Oberto G, Vaglini F, Fascetti F, Fornai F, Corsini GU: MK-801 prevents l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-in-duced parkinsonism in primates. J Neurochem 59: 733–739, 1992

    Article  PubMed  CAS  Google Scholar 

  6. Henshaw R, Jenkins BG, Schulz JB, Ferrante RJ, Kowall NW, Rosen BR, Beal MF: Malonate produces striatal lesions by indirect NMDA receptor activation. Brain Res 647: 161–166, 1994

    Article  PubMed  CAS  Google Scholar 

  7. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH: Nitric oxide mediate glutamate neurotoxicity in primary cortical culture. Proc Natl Acad Sci USA 88: 6368–6371, 1991

    Article  PubMed  CAS  Google Scholar 

  8. Dawson TM, Snyder SH: Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14: 5147–5199, 1994

    PubMed  CAS  Google Scholar 

  9. Babbedge RC. Bland-Ward PA, Hart SL, Moore PK: Inhibition of rat cerebellar nitric oxide synthase by 7-nitro indazole and related substituted indazoles. Br J Pharmacol 110: 225–228, 1993

    Article  PubMed  CAS  Google Scholar 

  10. Moore PK, Wallace P, Gaffen Z, Hart SL, Babbedge RC: Characterization of the novel nitric oxide synthase inhibitor 7-nitro indazole and related indazoles: Antinociceptive and cardiovacular effects. Br J Pharmacol 110: 219–224, 1993

    Article  PubMed  CAS  Google Scholar 

  11. Yoshida T, Limmroth V, Irikura K, Moskowitz MA: The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 14: 924–929, 1994

    Article  PubMed  CAS  Google Scholar 

  12. Schulz JB, Matthews RT, Jenkins BG, Ferrante RJ, Siwek D, Henshaw DR, Cipolloni PB, Mecocci P, Kowall NW, Rosen BR, Beal MF: Blockade of neuronal nitric oxide synthase protects against excito-toxicity in vivo. J Neurosci 15: 8419–8429, 1995

    PubMed  CAS  Google Scholar 

  13. Butler AR, Flitney FW, Williams DLH: NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: A chemist’s perspective. TIPS 16: 18–22, 1995

    PubMed  CAS  Google Scholar 

  14. Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, Tsai M: Kinetics of Superoxide dismutase-and iron-catalazed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298: 438–445, 1992

    Article  PubMed  CAS  Google Scholar 

  15. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS: Peroxynitritemediated tyrosine nitration catalyzed by Superoxide dismutase. Arch Biochem Biophys 298: 431–437, 1992

    Article  PubMed  CAS  Google Scholar 

  16. Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288: 484–487, 1991

    Google Scholar 

  17. Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite oxidation of sulfhydryls. J Biol Chem 266: 4244–4250, 1991

    PubMed  CAS  Google Scholar 

  18. Beckman JS, Ye YZ, Anderson P, Chen J, Accavitti M, Tarpey MM, White CR: Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe-Seyler 375:81–88, 1994

    Article  Google Scholar 

  19. Beckman JS, Beckman TW. Chen J, Marshall PM. Freeman BA: Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87: 1621–1624, 1990

    Article  Google Scholar 

  20. Floyd RA, Watson JJ, Wong PK: Sensitive assay of hydroxyl radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J Biochem Biophys Meth 10: 221–235, 1984

    Article  PubMed  CAS  Google Scholar 

  21. Bolanos JP, Peuchen S, Heales SJR, Land JM, Clark JB: Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultures astrocytes. J Neurochem 63: 910–916, 1994

    Article  PubMed  CAS  Google Scholar 

  22. Bolanos JP, Heales SJR, Land JM, Clark JB: Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64: 1965–1972, 1995

    Article  PubMed  CAS  Google Scholar 

  23. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV: Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain by nitric oxide. FEBS Lett 345: 50–54, 1994

    Article  PubMed  CAS  Google Scholar 

  24. Schweizer M, Richter C: Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Comm 204: 169–175, 1994

    Article  PubMed  CAS  Google Scholar 

  25. Zhang J, Dawson VL, Dawson TM, Snyder SH: Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263: 687–689, 1994

    Article  PubMed  CAS  Google Scholar 

  26. Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF: Involvement of free radicals in excitotoxicity in vivo. J Neurochem 64: 2239–2247, 1995

    Article  PubMed  CAS  Google Scholar 

  27. Ludolph HC, Seelig M, Ludolph A, Novitt P, Allen CN, Spencer PS, Sabri MI: 3-Nitropropionic acid — exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18: 492–498, 1992

    Google Scholar 

  28. Brouillet E, Hantraye P, Ferrante R, Dolan R, Leroy-Willig A, Kowall N, Beal M: Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92: 7105–7109, 1995

    Article  PubMed  CAS  Google Scholar 

  29. Beal MF, Ferrante RJ, Henshaw DR. Matthews RT. Chan PH, WKN, Epstein CJ, Schulz JB: 3-Nitropropionic acid neurotoxicity is attenuated in copper/zinc Superoxide dismutase transgenic mice. J Neurochem 65: 919–922, 1995

    Article  PubMed  CAS  Google Scholar 

  30. Schulz JB, Matthews RT, Muqit MMK, Browne SE, Beal MF: Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP induced neurotoxicity in mice. J Neurochem 64: 936–939, 1995

    Article  PubMed  CAS  Google Scholar 

  31. Smith TS, Swerdlow RH, Parker WJ, Bennett JJ: Reduction of MPP(+)-induced hydroxyl radical formation and nigrostriatal MPTP toxicity by inhibiting nitric oxide synthase. NeuroReport 5: 2598–2600, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schulz, J.B., Matthews, R.T., Klockgether, T., Dichgans, J., Beal, M.F. (1997). The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. In: Gellerich, F.N., Zierz, S. (eds) Detection of Mitochondrial Diseases. Developments in Molecular and Cellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6111-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6111-8_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7800-6

  • Online ISBN: 978-1-4615-6111-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics