Skip to main content

Latin Hypercube Sampling Monte Carlo Estimation of Average Quality Index for Integrated Circuits

  • Chapter
Analog Design Issues in Digital VLSI Circuits and Systems

Abstract

The Monte Carlo method exhibits generality and insensitivity to the number of stochastic variables, but is expensive for accurate Average Quality Measure (AQI) or Parametric Yield estimation of MOS VLSI circuits. In this contribution a new method of variance reduction technique, viz. the Latin Hypercube Sampling (LHS) method is presented which improves the efficiency of AQI estimation in integrated circuits especially for MOS digital circuits. This method is similar to the Primitive Monte Carlo (PMC) method except in samples generation step where the Latin Hypercube Sampling method is used. This sampling method is very simple and does not involve any further simulations. Moreover, it has a smaller variance with respect to the PMC estimator. Encouraging results have thus far been obtained. A 3-dimensional quadratic function, a high pass filter, and a CMOS delay circuit examples are included to demonstrate the efficiency of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Zhang and M. A. Styblinski, Yield and Variability Optimization of Integrated Circuits. Springer Science+Business Media New York, 1995.

    Book  Google Scholar 

  2. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods. Fletcher: Norwich, England, 1975.

    Google Scholar 

  3. R. Y. Rubinstein, Simulation and the Monte Carlo Method. John Wiley & Sons, Inc., 1981.

    Book  Google Scholar 

  4. K. Singhal and J. F. Pinel, “Statistical design centering and tolerancing using parametric sampling.” IEEE Trans. Circuits and Syst. CAS-28(7), pp.1 692–702, July 1981.

    Article  Google Scholar 

  5. D. E. Hocevar, M. R. Lightner, and T. N. Trick, “A study of variance reduction techniques for estimating circuit yields.” IEEE Trans. Computer-Aided Design CAD-2(3), pp.2 180–192, July 1983.

    Article  Google Scholar 

  6. P. J. Rankin and R. S. Soin, “Efficient Monte Carlo yield prediction using control variates,” in Proc. IEEE Int. Symp. Circuits and Systems, 1981, pp.2 143–148.

    Google Scholar 

  7. R. S. Soin and P. J. Rankin, “Efficient tolerance analysis using control variates.” IEE Proc. 132, Pt. G(4), pp.1 131–142, August 1985.

    Google Scholar 

  8. M. L. Stein, “An efficient method of sampling for statistical circuit design.” IEEE Trans. Computer-Aided Design CAD-5(1), pp.1 23–29, January 1986.

    Article  Google Scholar 

  9. D. E. Hocevar, M. R. Lightner, and T. N. Trick, “Monte Carlo based yield maximization with a quadratic model,” in Proc. IEEE Int. Symp. Circuits and Systems, New Port Beach, CA, 1983, pp. 550–553.

    Google Scholar 

  10. M. A. Styblinski, “Efficiency of yield estimation by the Monte Carlo methods,” in Int. Conf. Computer-Aided Design Manufacture Electronic Components Circuits Syst., Sussex, England, July 1979, pp. 150–153.

    Google Scholar 

  11. M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in analysis of output from a computer code.” Technometrics 21(2), pp. 239–245, May 1979.

    MathSciNet  MATH  Google Scholar 

  12. L. A. Zadeh, “Fuzzy sets.” Information and Control 8, pp. 338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. A. Zadeh, “Probability measures of fuzzy events.” J. Math. Anal. Apl. 23, pp. 421–427, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. W. Director, P. Feldmann, and K. Krishna, “Optimization of parametric yield: a tutorial,” in Proc. IEEE Custom Integrated Circuits Conference, 1992, pp. 3.11–318.

    Google Scholar 

  15. P. Cox, P. Yang, S. S. Mahant-Shetti, and P. Chatterjee, “Statistical modeling for efficient parametric yield estimation of MOS VLSI circuits.” IEEE Trans. Electron Devices ED-32(2), pp. 471–478, February 1985.

    Article  Google Scholar 

  16. A. Papoulis, Probability, Random Variables, and Stochastic Process. Third edition, McGraw-Hill, Inc., 1991.

    Google Scholar 

  17. G. E. P. Box and N. R. Draper, Empirical Model-Building and Responce Surfaces. John Wiley & Sons, Inc., 1987.

    Google Scholar 

  18. H. A. Steinberg, “Generalized quota sampling,” Nuc. Sci. and Engr. 15, pp. 142–145, 1963.

    Google Scholar 

  19. Raj and Des, Sampling Theory. McGraw-Hill: New York, 1968.

    Google Scholar 

  20. R. L. Iman and W. J. Conover, “Small sample sensitivity analysis technique for computer models, with an application to risk assessment.” Communications in Statistics A9-(17), pp. 1749–1874, 1980.

    Article  MathSciNet  Google Scholar 

  21. R. L. Iman and W. J. Conover, “A distribution-free approach to inducing rank correlation among input variables.” Communications in Statistics Simula. Computa. B11-(3), pp. 311–334, 1982.

    Article  MATH  Google Scholar 

  22. R. L. Iman and J. C. Helton, “An investigation of uncertainty and sensivity analysis techniques for computer models.” Risk Analysis 8(1), pp. 71–90, 1988.

    Article  Google Scholar 

  23. T. K. Yu and S. M. Kang, “Parametric yield optimization of CMOS analog circuits by quadratic stochastic circuit performance models.” Int. Journal of Circuit Theory and Applications 19, pp. 579–592, 1991.

    Article  Google Scholar 

  24. M. Singha and R. Spence, “The parametric yield enhancement of integrated circuits.” Int. Journal of Circuit Theory and Applications 19, pp. 565–578, 1991.

    Article  Google Scholar 

  25. M. C. Bernardo, R. Buck, L. Liu, W. A. Nazaret, J. Sacks, and W. J. Welch, “Integrated circuit design optimization using a sequential strategy.” IEEE Trans. Computer-Aided Design 11(3), pp. 361–372, March 1992.

    Article  Google Scholar 

  26. M. A. Styblinski and Syed Aftab, “Combination of interpolation and self-organizing approximation techniques-a new approach to circuit performance modeling.” IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems 12(11), pp. 1775–1785, November 1993.

    Article  Google Scholar 

  27. M. Keramat, “Theoretical bases of Latin hypercube sampling Monte Carlo (LHSMC) estimators for statistical circuit design.” Ecole Superieure d’Electricite (SUPELEC), Paris, France, Tech. Rep. No. SUP-0696–11, June 1996.

    Google Scholar 

  28. P. Cox, P. Yang, S. S. Mahant-Shetti, and P. Chatterjee, “Statistical modeling for efficient parametric yield estimation of MOS VLSI circuits.” IEEE Trans. Electron Devices ED-32(2), pp. 471–478, February 1985.

    Article  Google Scholar 

  29. P. Yang, D. E. Hocevar, P. F. Cox, C. Machala, and P. K. Chatterjee, “An integrated and efficient approach for MOS VLSI statistical circuit design.” IEEE Trans. on Computer-Aided Design CAD-5(1), pp. 5–14, January 1986.

    Article  Google Scholar 

  30. D. E. Hocevar, P. E Cox, and P. Yang, “Parametric yield optimization for MOS circuit blocks.” IEEE Trans. Computer-Aided Design 7(6), pp. 645–658, June 1988.

    Article  Google Scholar 

  31. J. F. Pinel and K. A. Roberts, “Tolerance assignment in linear network using nonlinear programming.” IEEE Trans. Circuit Theory 19(5), pp. 475–479, September 1972.

    Article  Google Scholar 

  32. P. Aldebert and R. Klielbasa, “OMEGA: open electrical circuit simulation system, user’s manual, version 6.0,” Ecole Superieure d’Electricite (SUPELEC), Paris, France, Tech. Rep., September 1993.

    Google Scholar 

  33. The Mathworks, Inc., MATLAB: External Interface Guide, 1993.

    Google Scholar 

  34. M. Keramat, “Using Matlab in interprocess communications,” Ecole Superieure d’Electricite (SUPELEC), Paris, France, Tech. Rep. No. SUP-0496–7, April 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keramat, M., Kielbasa, R. (1997). Latin Hypercube Sampling Monte Carlo Estimation of Average Quality Index for Integrated Circuits. In: Becerra, J.J., Friedman, E.G. (eds) Analog Design Issues in Digital VLSI Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6101-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6101-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7795-5

  • Online ISBN: 978-1-4615-6101-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics