Skip to main content

Inflammatory Mechanisms of Remodeling in Injured Arteries

  • Chapter
Arterial Remodeling: A Critical Factor in Restenosis

Abstract

Understanding the mechanisms that produce and the development of effective treatments for restenosis following angioplasty have eluded intense efforts over two decades. Enthusiasms for various therapies have waxed and waned, confronting us with the limitations of our mastery of the biology of restenosis. Our initial concepts of the mechanisms of restenosis now appear naive. Although we have learned a great deal from animal models of arterial injury, direct translation of the findings of such studies to the more complex situation in humans has proven frustrating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kakuta T., J.W. Currier, C.C. Haudenschild, T.J. Ryan, D.P. Faxon. 1994. Differences in compensatory vessel enlargement, not intimal formation, account for restenosis after angioplasty in the hypercholesterolemic rabbit model. Circulation 89:2809–15.

    Article  PubMed  CAS  Google Scholar 

  2. Lafont A., L.A. Guzman, P.L. Whitlow, M. Goormastic, J.F. Comhill, G.M. Chisolm. 1995. Restenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with constrictive remodeling. Circ Res 76:996–1002.

    Article  PubMed  CAS  Google Scholar 

  3. Guzman L., M. Mick, A. Arnold, F. Forudi, P. Whitlow. 1996. Role of intimai hyperplasia and arterial remodeling after balloon angioplasty. Arterioscl Thromb Vasc Biol 16:479–487.

    Article  PubMed  CAS  Google Scholar 

  4. Andersen H., M. Maeng, M. Thorwest, E. Falk. 1996. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation 93:1716–1724.

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka H., G. Sukhova, S. Swanson, S. Clinton, P. Ganz, M. Cybulsky, P. Libby. 1993. Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation 88:1788–1803.

    Article  PubMed  CAS  Google Scholar 

  6. Li H., M.I. Cybulsky, M.A. Gimbrone Jr., P. Libby. 1993. An atherogenic diet rapidly induces VCAM-1, a cytokine regulatable mononuclear leukocyte adhesion molecule, in rabbit endothelium. Arterioscl Thromb Vasc 13:197–204.

    Article  Google Scholar 

  7. Li H., M.I. Cybulsky, M.A. Gimbrone Jr., P. Libby. 1993. Inducible expression of vascular cell adhesion molecule-1 (VCAM-1) by vascular smooth muscle cells in vitro and within rabbit atheroma. Am. J. Path. 143:1551–1559.

    PubMed  CAS  Google Scholar 

  8. Tanaka H., G. Sukhova, D. Schwartz, P. Libby. 1996. Proliferating arterial smooth muscle cells after balloon injury express TNF-alpha but not interleukin-1 or basic fibroblast growth factor. Arterioscl Thromb Vasc 16:12–18.

    Article  CAS  Google Scholar 

  9. Libby P., D. Schwartz, E. Brogi, H. Tanaka, S.K. Clinton. 1992. A cascade model for restenosis, a special case of atherosclerosis progression. Circulation 86 (III):47–52.

    Google Scholar 

  10. Kranzhöfer R., S.K. Clinton, K. Ishii, S.R. Coughlin, J.W.I. Fenton, P. Libby. 1996. Thrombin potently induces cytokine production by human vascular smooth muscle cells but not in mononuclear phagocytes. Circ Res in press:

    Google Scholar 

  11. Beckman J.S., J. Chen, H. Ischiropoulos, J.P. Crow. 1994. Oxidative chemistry of peroxynitrite. Methods Enzymol 233:229–40.

    Article  PubMed  CAS  Google Scholar 

  12. . Geng Y., G.K. Hansson, E. Holme. 1992. Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ Res 71:1268–76.

    Article  PubMed  CAS  Google Scholar 

  13. Bussolino F., F. Breviario, C. Tetta, M. Aglietta, A. Mantovani, E. Dejana. 1986. Interleukin 1 stimulates platelet-activating factor production in cultured human endothelial cells. J. Clin. Invest. 77:2027–2033.

    Article  PubMed  CAS  Google Scholar 

  14. Lindner V., M.A. Reidy. 1991. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Nall Acad Sci USA 88:3739–43.

    Article  CAS  Google Scholar 

  15. Ferns G., E. Raines, K. Sprugel, A. Motani, M. Reidy, R. Ross. 1991. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 253:1129–1132.

    Article  PubMed  CAS  Google Scholar 

  16. Raines E.W., S.K. Dower, R. Ross. 1989. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 243:393–396.

    Article  PubMed  CAS  Google Scholar 

  17. Hajjar K.A., D.P. Hajjar, R.L. Silverstein, R.L. Nachman. 1987. Tumor necrosis factor-mediated release of platelet-derived growth factor from cultured endothelial cells. J. Exp. Med. 166:235–245.

    Article  PubMed  CAS  Google Scholar 

  18. O’Brien E.R., C.E. Alpers, D.K. Stewart, M. Ferguson, N. Tran, D. Gordon, E.P. Benditt, T. Hinohara, J.B. Simpson, S.M. Schwartz. 1993. Proliferation in primary and restenotic coronary atherectomy tissue. Implications for antiproliferative therapy. Circ Res 73:223–31.

    Article  PubMed  Google Scholar 

  19. Gibbons G.H., R.E. Pratt, V.J. Dzau. 1992. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest 90:456–461.

    Article  PubMed  CAS  Google Scholar 

  20. Hansson G.K., L. Jonasson, J. Holm, M.K. Clowes, A. Clowes. 1988. Gamma interferon regulates vascular smooth muscle proliferation and la expression in vivo and in vitro. Circ. Res 63:712–719.

    Article  PubMed  CAS  Google Scholar 

  21. Hansson G.K., M. Hellstrand, L. Rymo, L. Rubbia, G. Gabbiani. 1989. Interferon-gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170:1595–1608.

    Article  PubMed  CAS  Google Scholar 

  22. Warner S.J.C., G.B. Friedman, P. Libby. 1989. Immune interferon inhibits proliferation and induces 2’-5’-oligoadenylate synthetase gene expression in human vascular smooth muscle cells. J Clin. Invest. 83:1174–1182.

    Article  PubMed  CAS  Google Scholar 

  23. Libby P., S.J.C. Warner, G.B. Friedman. 1988. Interleukin-l: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest. 88:487–498.

    Article  Google Scholar 

  24. Amento E.P., N. Ehsani, H. Palmer, P. Libby. 1991. Cytokines positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arteriosclerosis 11:1223–1230.

    Article  CAS  Google Scholar 

  25. Edwards I.J., H. Xu, M.J. Wright, W.D. Wagner. 1994. Interleukin-1 upregulates decorin production by arterial smooth muscle cells. Arterioscl Thromb Vasc 14:1032–9.

    Article  CAS  Google Scholar 

  26. . Galis Z., M. Muszynski, G. Sukhova, E. Simon-Morrisey, E. Unemori, M. Lark, E. Amento, P. Libby. 1994. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ. Res. 75:181–189.

    Article  PubMed  CAS  Google Scholar 

  27. Armstrong M.L., M.B. Megan, D.D. Heistad. 1989. Adaptive responses of the artery wall as human atherosclerosis develops. Pathobiol Human Atheroscl Plaque, 469–480.

    Google Scholar 

  28. Clarkson T.B., R.W. Prichard, T.M. Morgan, G.S. Petrick, K.P. Klein. 1994. Remodeling of coronary arteries in human and nonhuman primates [see comments). JAMA 271:289–94.

    Article  PubMed  CAS  Google Scholar 

  29. Glagov S., E. Weisenberg, C. Zarins, R. Stankunavicius, G. Kolletis. 1987. Compensatory enlargement of human atherosclerotic coronary arteries. N., Engl,. J., Med, 316:371–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Libby, P. et al. (1997). Inflammatory Mechanisms of Remodeling in Injured Arteries. In: Lafont, A., Topol, E.J. (eds) Arterial Remodeling: A Critical Factor in Restenosis. Developments in Cardiovascular Medicine, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6079-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6079-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7785-6

  • Online ISBN: 978-1-4615-6079-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics