Skip to main content

Intimal Lesion Growth: An Assessment of Important Cellular Events

  • Chapter
Arterial Remodeling: A Critical Factor in Restenosis

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 198))

  • 62 Accesses

Abstract

The theme of this book is vascular remodeling, and perhaps one reason why this concept is of current interest is because our knowledge of arterial lesion growth in experimental animals after angioplasty has not been predicative of the process of lesion growth in humans. In particular, agents found to be important in inhibiting lesions in small mammalian arteries after balloon injury have not been useful in predicting the outcomes in humans after angioplasty (1). One possibility, therefore, is that the growth of lesions in humans does not involve those cellular processes which occur in the rat artery. The role of this chapter is to try to point out some of the differences that may have been responsible for this belief and to highlight the key molecular events that are known to take place in lesion growth in our experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MERCATOR Study Group. 1992. Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Circulation. 86:100–110.

    Article  Google Scholar 

  2. Austin, G. E., N. B. Ratliff, J. Holtman, S. Tabei, and D. F. Phillips. 1985. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. Journal Of The American College Of Cardiology. 6:369–375.

    Article  PubMed  CAS  Google Scholar 

  3. Waller, B. F., C. A. Pinkerton, and L. N. Foster. 1987. Morphologic evidence of accelerated left main coronary artery stenosis: a late complication of percutaneous transluminal balloon angioplasty of the proximal left anterior descending coronary artery. Journal Of The American College Of Cardiology. 9:1019–1023.

    Article  PubMed  CAS  Google Scholar 

  4. Liu, M. W., G. S. Roubin, and S. B. King. 1989. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimai hyperplasia. Circulation. 79:1374–1387.

    Article  PubMed  CAS  Google Scholar 

  5. Clowes, A. W., M. A. Reidy, and M. M. Clowes. 1983. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab. Invest. 49:327–333.

    PubMed  CAS  Google Scholar 

  6. Clowes, A. W., M. A. Reidy, and M. M. Clowes. 1983. Mechanisms of stenosis after arterial injury. Lab. Invest. 49:208–215.

    PubMed  CAS  Google Scholar 

  7. Lafont, A., Durand E., Rabat, S., de Oliveira, M., Guérin, Y., Fernandez, F., Desnos, M., and Guérot, C. 1995. [Restenosis: physiopathology, treatments and prevention]. Ann. Cardiol. Angeiol. 44:349–353.

    CAS  Google Scholar 

  8. Laurent, S., Vanhoutte, P., Cavero, I., and et al. 1995. [Arterial wall: a new pharmacological and therapeutic target?]. Therapie. 50:387–398.

    PubMed  CAS  Google Scholar 

  9. Basso, C., A. Angelini, and G. Thiene. 1994. [Histopathological features of balloon coronary angioplasty]. Cardiologia. 39:47–51.

    PubMed  CAS  Google Scholar 

  10. Schwartz, R. S. 1994. Neointima and arterial injury: dogs, rats, pigs, and more [editorial; comment]. Lab Invest. 71:789–791.

    PubMed  CAS  Google Scholar 

  11. Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. 1987. Compensatory enlargement of human atherosclerotic coronary arteries. New Eng J Med. 316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  12. Folkow, B. 1982. Physiological aspects of primary hypertension. Physiol Rev. 62:347–504.

    PubMed  CAS  Google Scholar 

  13. Jamal, A., M. Bendeck, and B. L. Langille. 1992. Structural changes and recovery of function after arterial injury. Arterioscler. Thromb. 12:307–317.

    Article  PubMed  CAS  Google Scholar 

  14. Langille, B. L. and F. O’donnell. 1986. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407.

    Article  PubMed  CAS  Google Scholar 

  15. Cho, A., D. W. Courtman, and B. L. Langille. 1995. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res. 76:168–175.

    Article  PubMed  CAS  Google Scholar 

  16. Langille, B. L. 1991. Hemodynamic factors and vascular disease. In Cardiovascular pathology. M.D. Silver, editor. Churchill Livingstone, New York, New York. 131–154.

    Google Scholar 

  17. Nobuyoshi, M., T. Kimura, H. Ohishi, H. Horiuchi, H. Nosaka, N. Hamasaki, H. Yokoi, and K. Kim. 1991. Restenosis after percutaneous transluminal coronary angioplasty: pathologic observations in 20 patients. J. Am. Coll. Cardiol. 17:433–439.

    Article  PubMed  CAS  Google Scholar 

  18. Miller, M. J., R. E. Kuntz, S. P. Friedrich, G. A. Leidig, R. F. Fishman, S. J. Schnitt, D. S. Bairn, and R. D. Safian. 1993. Frequency and consequences of intimal hyperplasia in specimens retrieved by directional atherectomy of native primary coronary artery stenoses and subsequent restenoses. Am. J. Cardiol. 71:652–658.

    Article  PubMed  CAS  Google Scholar 

  19. Schnitt, S. J., R. D. Safian, R. E. Kuntz, D. A. Schmidt, and D. S. Bairn. 1992. Histologic findings in specimens obtained by percutaneous directional coronary atherectomy. Human Pathology. 23:415–420.

    Article  PubMed  CAS  Google Scholar 

  20. Orekhov, A. N., I. I. Karpova, V. V. Tertov, S. A. Rudchenko, E. R. Andreeva, A. V. Krushinsky, and V. N. Smimov. 1984. Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Light-microscopic study of dissociated aortic cells. Am JI Pathol. 115:17–24.

    CAS  Google Scholar 

  21. Rekhter, M. D., E. R. Andreeva, I. V. Andrianova, A. A. Mironov, and A. N. Orekhov. 1992. Stellate cells of aortic intima: I. Human and rabbit. Tissue Cell 24:689–696.

    Article  PubMed  CAS  Google Scholar 

  22. Andreeva, E. R., M. D. Rekhter, Y. A. Romanov, G. M. Antonova, A. S. Antonov, A. A. Mironov, and A. N. Orekhov. 1992. Stellate cells of aortic intima: II. Arborization of intima) cells in culture. Tissue Cell 24:697–704.

    Article  PubMed  CAS  Google Scholar 

  23. Fairman, M. P. 1990. DNA polymerase delta/PCNA: actions and interactions. Journal Of Cell Science. 95:1–4.

    PubMed  CAS  Google Scholar 

  24. O’Brien, E. R., C. E. Alpers, D. K. Stewart, M. Ferguson, N. Tran, D. Gordon, E. P. Benditt, T. Hinohara, J. B. Simpson, and S. M. Schwartz. 1993. Proliferation in primary and restenotic coronary atherectomy tissue: Implications for antiproliferative therapy. Circ. Res. 73:223–231.

    Article  PubMed  Google Scholar 

  25. Leclerc G, Kearney M, Schneider D, Rosenfield K, Losordo DW, and Isner JM. 1993. Assessment of cell kinetics in human restenotic lesions by in vitro bromodeoxyuridine labeling of excised atherectomy specimens. Clin Res 41:343A.

    Google Scholar 

  26. Pickering, J. G., L. Weir, J. Jekanowski, M. A. Kearney, and J. M. Isner. 1993. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J. Clin. Invest. 91:1469–1480.

    Article  PubMed  CAS  Google Scholar 

  27. Clowes, A. W., M. M. Clowes, and M. A. Reidy. 1986. Kinetics of cellular proliferation after arterial injury. Ill. Endothelial and smooth muscle growth in chronically denuded vessels. Lab. Invest. 54:295–303.

    PubMed  CAS  Google Scholar 

  28. Lindner, V. and M. A. Reidy. 1991. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88:3739–3743.

    Article  PubMed  CAS  Google Scholar 

  29. Olson, N. E., S. Chao, V. Lindner, and M. A. Reidy. 1992. Intimal smooth muscle cell proliferation after balloon catheter injury: The role of basic fibroblast growth factor. Am. J. Pathol. 140:1017–1023.

    PubMed  CAS  Google Scholar 

  30. Fingerle, J., R. M. K. Müller, H. Kuhn, M. Pech, and H. R. Baumgartner. 1995. Mechanism of inhibition of neointimal formation by the angiotensin-converting enzyme inhibitor cilazapril - A study in balloon catheter-injured rat carotid arteries. Arterioscler. Thromb. Vasc. Biol. 15:1945–1950.

    Article  PubMed  CAS  Google Scholar 

  31. Lindner, V., N. E. Olson, A. W. Clowes, and M. A. Reidy. 1992. Inhibition of smooth muscle cell proliferation in injured rat arteries. Interaction of heparin with basic fibroblast growth factor. J. Clin. Invest. 90:2044–2049.

    Article  PubMed  CAS  Google Scholar 

  32. Riessen, R., T. N. Wight, C. Pastore, C. Henley, and J. M. Isner. 1996. Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries. Circulation 93:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz, S. M., M. R. Reidy, and A. Clowes. 1985. Kinetics of atherosclerosis: a stem cell model. Ann. N. Y. Acad. Sci. 454:292–304.

    Article  PubMed  CAS  Google Scholar 

  34. Jawien, A. D., D. F. Bowen-Pope, V. Lindner, S. M. Schwartz, and A. W. Clowes. 1992. Platelet-derived growth factor promotes smooth muscle migration and intimai thickening in a rat model of balloon angioplasty. J. Clin. Invest. 89:507–511.

    Article  PubMed  CAS  Google Scholar 

  35. Bendeck, M. P., N. Zempo, A. W. Clowes, R. E. Galardy, and M. A. Reidy. 1994. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ. Res. 75:539–545.

    Article  PubMed  CAS  Google Scholar 

  36. Fingerle, J., R. Johnson, A. W. Clowes, M. W. Majesky, and M. A. Reidy. 1989. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc. Natl. Acad. Sci. USA 86:8412–8416.

    Article  PubMed  CAS  Google Scholar 

  37. Jackson, C. L. and M. A. Reidy. 1993. Basic fibroblast growth factor: Its role in the control of smooth muscle cell migration. Am. J. Pathol. 143:1024–1031.

    PubMed  CAS  Google Scholar 

  38. Jackson, C. L., E. Raines, R. Ross, and M. A. Reidy. 1993. Role of endogenous platelet-derived growth factor in arterial smooth muscle cell migration after balloon catheter injury. Arterioscler. Thromb. Vasc. Biol 13:1218–1226.

    Article  CAS  Google Scholar 

  39. Clowes, A. W., M. M. Clowes, T. R. Kirkman, C. L. Jackson, Y. P. T. Au, and R. Kenagy. 1992. Heparin inhibits the expression of tissue-type plasminogen activator by smooth muscle cells in injured rat carotid artery. Circ. Res. 70:1128–1136.

    Article  PubMed  CAS  Google Scholar 

  40. Clowes, A. W. and M. J. Karnowsky. 1977. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265:625–626.

    Article  PubMed  CAS  Google Scholar 

  41. Birkedal Hansen, H., W. G. Moore, M. K. Bodden, L. J. Windsor, B. Birkedal Hansen, A. DeCarlo, and J. A. Engler. 1993. Matrix metalloproteinases: a review. Critical Rev Oral Biol Med. 4:197–250.

    Google Scholar 

  42. Murphy, G., J. J. Reynolds, and R. M. Hembry. 1989. Metalloproteinases and cancer invasion and metastasis. Int. J Cancer 44:757–760.

    Article  PubMed  CAS  Google Scholar 

  43. Bendeck, M. P., C. Irvin, and M. A. Reidy. 1996. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ. Res. 78:38–43.

    Article  PubMed  CAS  Google Scholar 

  44. Koyama, H. and M. A. Reidy. 1996. Reinjury of arterial intimai lesions induces smooth muscle cell replication which is not controlled by fibroblast growth factor 2. Circ Res. (In Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reidy, M.A. (1997). Intimal Lesion Growth: An Assessment of Important Cellular Events. In: Lafont, A., Topol, E.J. (eds) Arterial Remodeling: A Critical Factor in Restenosis. Developments in Cardiovascular Medicine, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6079-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6079-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7785-6

  • Online ISBN: 978-1-4615-6079-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics