Skip to main content

Influence of Angioplasty on Matrix Signalling and Metabolism

  • Chapter
Arterial Remodeling: A Critical Factor in Restenosis

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 198))

  • 63 Accesses

Abstract

Our concepts of the pathophysiology of restenosis have undergone several changes in the last few years. Restenosis has traditionally been attributed to the growth of a neointimal lesion, known as intimai hyperplasia (Figure 1). Smooth muscle cell (SMC) proliferation and migration were central to this concept of restenosis. This prompted research strategies to prevent restenosis by targeting (unsuccessfully) SMC proliferation. These early concepts of restenosis have been altered by the awareness of the significance of various extracellular matrix (ECM) protein accumulation (including collagen, elastin and proteoglycans) in contributing to and modulating neointimal hyperplasia. In addition, a second process, termed “vascular remodelling”, which involves a contracture of the outer vessel circumference, is now appreciated as a second important process leading to restenosis. Recent observations have also suggested that the relative contribution of these 2 processes (intimai hyperplasia and vascular remodeling) to restenosis may be quite different, depending on the type of coronary intervention. While the mechanisms responsible for intimal hyperplasia and “vascular remodeling” remain poorly understood, the extracellular matrix appears to be an integral part of the vascular response to injury in the intima and probably in the adventitia as well. Thus, the perspective in this book chapter is on the role of matrix proteins in the restenotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reidy MA, Fingerle J, Lindner V. Factors controlling the development of arterial lesions after injury. Circulation 1992;86[suppl III]:III-43–III-46.

    Google Scholar 

  2. Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 1992;19:267–274.

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz RS, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR. Restenosis after balloon angioplasty: a practical proliferative model in porcine coronary arteries. Circulation 1990;82:2190–2200.

    Article  PubMed  CAS  Google Scholar 

  4. Steele PM, Chesbro JH, Stanson AW, Holmes DR, Dewanjee MK, Badimon L, Balloon angioplasty: natural history of the pathophysiological response to injury in a pig model. Circ Res 1985;57:105–112.

    Article  PubMed  CAS  Google Scholar 

  5. Austin GE, Ratliff NB, Holtman J, Tabei S, Phillips DF. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1985;6:369–375.

    Article  PubMed  CAS  Google Scholar 

  6. Essed CE, van den Brand M, Becker AE. Transluminal coronary angioplasty and early restenosis: fibrocellular occlusion after wall laceration. Br Heart J 1984;49:393–396.

    Article  Google Scholar 

  7. Farb A, Virmani R, Atkinson JB, Kolodgie FD. Plaque morphology and pathologic changes in arteries from patients dying after coronary balloon angioplasty. J Am Coll Cardiol 1990;16:1421–1429.

    Article  PubMed  CAS  Google Scholar 

  8. Garratt KN, Edwards WD, Vlietstra RE, Kaufmann UP, Holmes DR. Coronary morphology after percutaneous direction coronary atherectomy in humans: autopsy analysis of three patients. J Am Coll Cardiol 1990;16:1432–1436.

    Article  PubMed  CAS  Google Scholar 

  9. Ueda M, Becker AE, Fujimoto T. Pathologic changes induced by repeated percutaneous transluminal coronary angioplasty. Br Heart J 1987;58:635–643.

    Article  PubMed  CAS  Google Scholar 

  10. Strauss BH, van Suylen RJ, Umans VA, de Feyter PJ, Marco J, Robertson GC, Wijns W, Heyndrickx GR, Vuzevski VD, Bosman FT, Serruys PW. Directional atherectomy for treatment of restenosis within coronary stents: Clinical, angiographic and histologic results. J Am Coll Cardiol 1992;20:1465–1473.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson DE, Hinohara T, Selmon MR, Braden LJ, Simpson JB. Primary peripheral arterial stenoses and restenoses excised by transluminal atherectomy: a histopathologic study. J Am Coll Cardiol 1990;15:419–425.

    Article  PubMed  CAS  Google Scholar 

  12. Garratt KN, Edwards WD, Kaufmann UP, Vlietstra RE, Holmes Dr. Differential histopathology of primary atherosclerotic and restenotic lesions in coronary arteries and saphenous vein bypass grafts: analysis of tissue obtained from 73 patients by directional atherectomy. J Am Coll Cardiol 1991;17:442–448.

    Article  PubMed  CAS  Google Scholar 

  13. Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN. Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic coronary arteries. Am J Pathol 1994;144:962–974.

    PubMed  CAS  Google Scholar 

  14. O’Brien E, Alpers C, Stewart D, Ferguson M, Tran N, Gordon D, Benditt EP, Hinohara T, Simpson J, Schwartz S. Proliferation in primary and restenotic coronary atherectomy tissue. Implications for antiproliferative therapy. Circ Res 1993;73;223–231.

    Article  PubMed  Google Scholar 

  15. Pickering JG, Weir L, Jekanowski J, Kearney MA, Isner JM. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest 1993;91:1469–1480.

    Article  PubMed  CAS  Google Scholar 

  16. Bauriedel G, Windstetter U, DeMaio SJ Jr, Kandolf R, Hofling B. Migratory activity of human smooth muscle cells cultivated form coronary and peripheral primary and restenotic lesions removed by percutaneous atherectomy. Circulation 1992;85:554–564.

    Article  PubMed  CAS  Google Scholar 

  17. Nobuyoshi M, Kimura T, Ohishu H, Horiuchi H, Nosaka H, Hamasaki N, Yokoi H, Kim K. Restenosis after percutaneous transluminal coronary angioplasty: pathologic observations in 20 patients. J Am Coll Cardiol 1991;17:433–439

    Article  PubMed  CAS  Google Scholar 

  18. Forrester JS, Fishbein M, Helfant R, Fagin J. A paradigm for restenosis based on cell biology: clues for the development of new preventative therapies. J Am Coll Cardiol. 1991;17:759–69.

    Article  Google Scholar 

  19. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury: smooth muscle growth in the absence of endothelium. Lab Invest. 1983;49:327–333.

    PubMed  CAS  Google Scholar 

  20. Clowes, AW, Reidy MA, Clowes MM. Mechanisms of stenosis after arterial injury. Lab Invest. 1983;49:208–215.

    PubMed  CAS  Google Scholar 

  21. Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circ Res. 1993;73:792–796.

    Article  PubMed  CAS  Google Scholar 

  22. Olsen NE, Chao S, Lindner V, Reidy MA. Intimal smooth muscle cell proliferation after balloon catheter injury: the role of basic fibroblast growth factor. Am J Pathol. 1992;140:1017–1023.

    Google Scholar 

  23. Schwartz RS, Holmes DR, Topol EJ. The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J Am Coll Cardiol. 1992;20:1284–1293.

    Article  PubMed  CAS  Google Scholar 

  24. Hanke H, Strohschneider T, Oberhoff M, Betz E, Karsch KR. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ Res. 1990;67:651–659.

    Article  PubMed  CAS  Google Scholar 

  25. Strauss BH, Chisholm RJ, Keeley FW, Gotlieb AI, Logan RA, Armstrong PW. Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ Res. 1994;75:650–658.

    Article  PubMed  CAS  Google Scholar 

  26. O’Brien E, Alpers C, Stewart D, Ferguson M, Tran N, Gordon D, Benditt EP, Hinohara T, Simpson I, Schwartz S. Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy. Circ Res. 1993:73;223–231.

    Article  PubMed  Google Scholar 

  27. Pickering JG, Weir L, Jekanowski J, Kearney MA, Isner JM. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest. 1993;91:1469–1480.

    Article  PubMed  CAS  Google Scholar 

  28. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in Human Atherosclerosis and Restenosis. Circulation. 1995;91:2703–2711.

    Article  PubMed  CAS  Google Scholar 

  29. Clowes AW, Clowes MM, Fingerle J, Reidy MA. Regulation of smooth muscle cell growth in injured artery. J Cardiovasc Pharmacol 1989;14(suppl 6):S12–15.

    PubMed  Google Scholar 

  30. Nobuyoshi M, Kimura T, Nosaka H, Mioka S, Ueno K, Yokoi H, Hansaki N, Horiuchi H, Oshishi H. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol. 1988;12:616–623.

    Article  PubMed  CAS  Google Scholar 

  31. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 1987;5:413–420.

    PubMed  CAS  Google Scholar 

  32. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  33. Mintz GS, Popma JJ, Pichard AD, Kent KM. Satter LF, Wong SC, Hong MK, Kovach JA, Leon MB. Arterial remodeling after coronary angioplasty. A serial intravascular ultrasound study. Circulation 1996;94:35–43.

    Article  PubMed  CAS  Google Scholar 

  34. Kakuta T, Currier JW, Haudenschild CC, Ryan TH, Faxon DP. Differences in compensatory vessel enlargement, not intimai formation, account for restenosis after angioplasty in the hypercholesterolemic rabbit model. Circulation 1994;89:2809–2815.

    Article  PubMed  CAS  Google Scholar 

  35. Post MJ, Borst C, Kuntz RE. The relative importance of arterial remodeling compared with intimai hyperplasia in lumen renarrowing after balloon angioplasty. Circulation 1994;89:2816–2821.

    Article  PubMed  CAS  Google Scholar 

  36. Lafont A, Guzman LA, Whitlow PL, Goormastic M, Cornhill JF, Chisholm GM. Restenosis after experimental angioplasty. Intimal, medial and adventitial changes associated with constrictive remodeling. Circ Res 1995;76:996–1002.

    Article  PubMed  CAS  Google Scholar 

  37. Andersen HR, Maeng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury. Insights from a porcine coronary (re)stenosis model. Circulation 1996;93:1716–1724.

    Article  PubMed  CAS  Google Scholar 

  38. Brott BC, Labinaz M, Culp SC, Fortin DF, Virmani R, Phillips HR, Stack RS. Vessel remodeling after angioplasty: comparative anatomic studies. J Am Coll Cardiol 1994;23:138A. Abstract.

    Google Scholar 

  39. Haudenschild CC. Pathobiology of restenosis after angioplasty. Am J Med 1993;94:4A–40S–4A–44S.

    PubMed  CAS  Google Scholar 

  40. Glagov S. Intimai hyperplasia, vascular remodeling and the restenosis problem. Circulation 1994;89:2888–2891.

    Article  PubMed  CAS  Google Scholar 

  41. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 1996;93:2178–2187.

    Article  PubMed  CAS  Google Scholar 

  42. Raghow R. The role of the extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 1994;8:823–831.

    PubMed  CAS  Google Scholar 

  43. Grinnell F. Fibroblasts, myofibroblasts and wound contraction. J Cell Biol 1994:124;401–404.

    Article  PubMed  CAS  Google Scholar 

  44. Gailit J, Clark RAF. Wound repair in the context of extracellular matrix. Curr Opin Cell Biol 1994;6:717–725.

    Article  PubMed  CAS  Google Scholar 

  45. Orgill D, Demling RH. Current concepts and approaches to wound healing. Crit Care Med 1988;16:899–908.

    Article  PubMed  CAS  Google Scholar 

  46. Alverez O, Goslen J, Eaglestein W, Welgus H, Striclin G. Wound healing. In: Fitzpatrick T, Eisen A, Wolf K, Freedberg I, Austin K, editors. Dermatology in General Medicine. 3rd ed. New York:McGraw-Hill, 1986:321–36.

    Google Scholar 

  47. Reiser KM, McCormick R, Rucker RB. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J 1992;6:2439–2449.

    PubMed  CAS  Google Scholar 

  48. Reiser KM, Last JA. Collagen crosslinking in lungs of rats with experimental silicosis. Collagen Relat Res. 1986;6:313–323.

    Article  CAS  Google Scholar 

  49. Spears JR, Zhan H, Khurana S, Karvonen RL, Reiser KM. Modulation by beta-aminopropionitrile of vessel luminal narrowing and structural abnormalities in arterial wall collagen in a rabbit model of conventional balloon angioplasty versus laser balloon angioplasty. J Clin Invest 1994;93:1543–1553.

    Article  PubMed  CAS  Google Scholar 

  50. Gotwals PJ, Chi-Rosso G, Lindner V, Yang J, Ling L, Fawell SE, Koteliansky VE. The al fil integrin is expressed during neointimal formation in rat arteries and mediates collagen matrix reorganization. J Clin Invest 1996;97:2469–2477.

    Article  PubMed  CAS  Google Scholar 

  51. Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci 1979;76:1274–1278

    Article  PubMed  CAS  Google Scholar 

  52. Laurent TC, Fraser TC. Hyaluronan. FASEB J.1992;6:2397–2404.

    PubMed  CAS  Google Scholar 

  53. Rooney P, Kumar S. Inverse relationship between hyaluronan and collagens in development and angiogenesis. Differentiation.l993;54:1–9.

    PubMed  CAS  Google Scholar 

  54. Boudreau N, Turley E, Rabinovitch M. Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Develop Biol. 1991;143:235–247.

    Article  PubMed  CAS  Google Scholar 

  55. Banerjee SD and Toole BP. Hyaluronan-binding protein in endothelial cell morphogenesis. J Cell Biol 1992;119:643–652.

    Article  PubMed  CAS  Google Scholar 

  56. West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science 1985;228:1324–1326.

    Article  PubMed  CAS  Google Scholar 

  57. Savani RC, Wang C, Yang B, Zhang S, Kinsella MG, Wight T, Stem R, Nance DM, Turley EA. Migration of bovine aortic smooth muscle cells after wounding injury: the role of hyaluronan and RHAMM. J Clin Invest 1995;95:1158–68.

    Article  PubMed  CAS  Google Scholar 

  58. Riessen R, Wight TN, Pastore C, Henley C, Isner J. Distribution of Hyaluronan during extracellular matrix remodelling in human restenotic arteries and balloon-injured rat carotid arteries. Circulation 1996;93:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  59. Takasaki I, Chobanian AV, Mamuya WS, Brecher P. Hypertension induces altematively spliced forms of fibronectin in rat aorta. Hypertension 1992;20:20–25.

    Article  PubMed  CAS  Google Scholar 

  60. Glukhova MA, Frid MG, Shekhonin BV, Vasilevkaya TD, Grunwald J, Saginati M, Koteliansky VE. Expression of extradomain A fibronectin sequence is phenotype dependent. J Cell Biol 1989:109:357–366.

    Article  PubMed  CAS  Google Scholar 

  61. Jensen BA, Holund B, Clemmensen L Demonstration of fibronectin in normal and injured aorta by an immunoperoxidase technique. Histochemistry. 1983;77:395–403.

    Article  PubMed  CAS  Google Scholar 

  62. Schwarzbauer JE. Alternative splicing of fibronectin: three variants, three functions. Bioassays 1991;13:527–33.

    Article  CAS  Google Scholar 

  63. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem 1988;57:375–413.

    Article  PubMed  CAS  Google Scholar 

  64. Dejana E, Raiteri M, Resnati M, Lampugnani MG. Endothelial integrins and their role in maintaining the integrity of the vessel wall. Kidney Int 1993;43:61–65.

    Article  PubMed  CAS  Google Scholar 

  65. Hynes RO. Cell Migration. In: Rich A (ed) Fibronectins. Springer, Berlin Heidelberg New York, 1990 pp249–280.

    Chapter  Google Scholar 

  66. Clyman RI, McDonald KA, Kramer RH. Integrin receptors on aortic smooth muscle cells mediate adhesion to fibronectin, laminin, and collagen. Circ Res 1990;67:175–86.

    Article  PubMed  CAS  Google Scholar 

  67. Hedin U, Bottger BA, Forsberg E, Hohansson S, Thyberg J. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 1988;107:307–19.

    Article  PubMed  CAS  Google Scholar 

  68. Jensen BAS, Holund B, Clemmensen I. Demonstration of fibronectin in normal and injured aorta by an indirect immunoperoxidase technique. Histochemistry 1983;77:395–403.

    Article  PubMed  CAS  Google Scholar 

  69. Bauters C, Marotte F, Hamon M, Olifiero P, Farhadian F, Robert V, Samuel JL, Rappaport L. Accumulation of fetal fibronectin mRNA’s after balloon denudation of rabbit arteries. Circulation 1995;92:904–911.

    Article  PubMed  CAS  Google Scholar 

  70. Dubin D, Peters JH, Brown LF, Logan B, Kent KC, Berse B, Berver S, Cercek B, Behrooz G, Sharifi BG, Pratt RE, Dzau VJ, Van De Water L. Balloon catheterization induces arterial expression of embryonic fibronectins. Arterioscler Thromb Vasc Bio1.1995;15: 1958–1967.

    Article  CAS  Google Scholar 

  71. Majesky MW. Neointima formation after acute vascular injury. Texas Heart Inst 1;1994;21:78–85

    CAS  Google Scholar 

  72. Mumby SM, Abbott-Brown D, Raugi GJ, Bornstein P. Regulation of thrombospondin secretion by cells in culture. J Cell Physiol 1984;120:280–288.

    Article  PubMed  CAS  Google Scholar 

  73. Majack RA, Cook SC, Bomstein P. Platelet-derived growth factor and heparin-like glycosaminoglycans regulate thrombospondin synthesis and deposition in the matrix by smooth muscle cells. J Cell Biol 1985;101:1059–1070.

    Article  PubMed  CAS  Google Scholar 

  74. Majack RA, Goodman LV, Dixit VM. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol 1988;106:415–422.

    Article  PubMed  CAS  Google Scholar 

  75. Majack RA, Cook SC, Bornstein P. Control of smooth muscle cell growth by components of the extracellular matrix: Autocrine role for thrombospondin. Proc Nati Acad Sci USA. 1986;83:9050–9054.

    Article  CAS  Google Scholar 

  76. Erickson HP, Bourdon MA. Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. 1989 Annu Rev Cell Biol;5:71–92.

    Article  PubMed  CAS  Google Scholar 

  77. Chiquet-Ehrismann R, Mackie EJ, Pearson CA, Sakakura T. Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 1986;47:131–139.

    Article  PubMed  CAS  Google Scholar 

  78. Hoffman S, Crossin KL, Prediger EA, Cunningham BA, Edelman GM. Expression and function of cell adhesion molecules during the early development of the heart. Ann NY Acad Sci 1990;588:73–86.

    Article  PubMed  CAS  Google Scholar 

  79. Mackie EI, Haltfter W, Liverani D. Induction of tenascin in healing wounds. J Cell Biol 1988;107:2757–2767.

    Article  PubMed  CAS  Google Scholar 

  80. Lightner VA, Slemp CA, Erickson HP. Localization and quantification of hexabrachion (tenascin) in skin, embryonic brain, tumors and plasma. Ann NY Acad Sci 1990;580:260–275.

    Article  PubMed  CAS  Google Scholar 

  81. Hedin U, Holm J, Hansson GK. Induction of tenascin in rat arterial injury: Relationship to altered smooth muscle cell phenotype. Am J Pathol 1991:139:649–656.

    PubMed  CAS  Google Scholar 

  82. Koukoulis G, Gould VE, Bhattacharyya A, Gould JE, Howeedy AA, Virtanen I. Tenascin in normal, reactive, hyperplastic, and neoplastic tissues: biologic and pathologic implications. Human Pathol 1991; 22: 636–643.

    Article  CAS  Google Scholar 

  83. Mackie EJ, Scott-Burden T, Hahn AWA, Kem F, Bernhardt J, Regenass S, Weller A, Buhler FR. Expression of tenascin by vascular smooth muscle cells: Alterations in hypertensive rats and stimulation by angiotensin II. Am J Pathol 1992;141:377–388.

    PubMed  CAS  Google Scholar 

  84. Hahn AWA, Kern F, Jonas U, John M, Buhler FR, Resink T. Functional aspects of vascular tenascin-C expression. J Vasc Res 1995;32:162–174.

    Article  PubMed  CAS  Google Scholar 

  85. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM. Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res 1994;74:214–24.

    Article  PubMed  CAS  Google Scholar 

  86. Liaw L, Lindner V, Schwartz SM, Chambers AF, Giachelli CM. Osteopontin and beta-3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp-dependent endothelial migration in vitro. Circ Res 1995;77:665–72.

    Article  PubMed  CAS  Google Scholar 

  87. Liaw L, Skinner MP, Raines EW, Ross R, Cheresh DA, Schwartz SM, Giachelli CM. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins: role of v-beta-3 in smooth muscle migration to osteopontin in vitro. J Clin Invest 1995;95:713–24.

    Article  PubMed  CAS  Google Scholar 

  88. Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, and Schwartz SM. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 1993;92:1686–96.

    Article  PubMed  CAS  Google Scholar 

  89. Gadeau AP, Campan M, Millet D, Candresse T. Desranges C. Osteopontin overexpression is associated with arterial smooth muscle cell proliferation in vitro. Arterioscler Thromb 1993;13:120–25.

    Article  PubMed  CAS  Google Scholar 

  90. Shanahan CM, Cary NRB, Metcalfe JC, Weissberg PL. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 1994;93:2393–2402.

    Article  PubMed  CAS  Google Scholar 

  91. Giachelli CM, Lombardi DM, Almeida MM, Schwartz SM, deBois D, Liaw L. Neutralizing antibodies directed against osteopontin inhibit rat carotid neointimal thickening following endothelial denudation (abstract). FASEB J 1996;10(6):A1139.

    Google Scholar 

  92. Newman C, Bruun BC, Porter KE, Mistry PK, Shanahan CM, Weissberg PL. Osteopontin is not a marker for proliferating human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1995; 15:2010–2018.

    Article  PubMed  CAS  Google Scholar 

  93. Bendeck MP, Regenass S, Tom WD, Giachelli CM, Schwartz SM, Hart C, Reidy MA. Differential expression of oil Type VIII collagen in injured platelet-derived growth factor-BB- stimulated rat carotid arteries. Circ Res 1996;79:524–531

    Article  PubMed  CAS  Google Scholar 

  94. Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN. Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 1994;144:962–74.

    PubMed  CAS  Google Scholar 

  95. Tyagi SC, Meyer L, Schmaltz RA, Reddy HK, Voelker DJ. Proteinases and restenosis in the human coronary artery: extracellular matrix production exceeds the expression of proteolytic activity. Atherosclerosis 1995;116(1):43–57.

    Article  PubMed  CAS  Google Scholar 

  96. Oho S, Rabinovitch M. Post-cardiac transplant arteriopathy in piglets is associated with fragmentation of elastin and increased activity of a serine elastase. Am J Pathol 1994;145:202–210.

    PubMed  CAS  Google Scholar 

  97. Todorovich-Hunter L, Dodo H, Ye C, McCready L, Keeley FW, Rabinovitch M. Increased pulmonary artery elastolytic activity in adult rats with monocrotaline-induced progressive hypertensive pulmonary vascular disease compared with infant rats with nonprogressive disease. Am Rev Resp Dis 1992; 146:213–223.

    PubMed  CAS  Google Scholar 

  98. Natarajan MK, Robinson R, Thompson KE, Chisholm RJ, Rabinovitch M, Strauss BH. Increased elastolytic activity after balloon angioplasty. Circulation 1996 [abstract] In press

    Google Scholar 

  99. Zhu L, Wigle D, Hinek A, Kobayashi J, Ye C, Zuker M, Dodo H, Keeley FW, Rabinovitch M: the endogenous vascular elastase which governs development and progression of monocrotalineinduced pulmonary hypertension in rats is a novel enzyme related to the serine proteinase adipsin. J Clin Invest 1994;94:1163–1171.

    Article  PubMed  CAS  Google Scholar 

  100. Hinek A, Wrenn DS, Mecham RP, Barondes SH. The elastin receptor: a galactosidase-binding protein. Science 1988;239:1539–1541.

    Article  PubMed  CAS  Google Scholar 

  101. Hinek A, Rabinovitch M, Keeley FW, Callahan J. the 67 kD elastin/laminin-binding protein is related to an alternatively spliced Beta-Galactosidase. J Clin Invest. 1993;91:1198–1205.

    Article  PubMed  CAS  Google Scholar 

  102. Hinek A, Boyle J, Rabinovitch M. Vascular smooth muscle cell detachment from elastin and migration through elastic laminas promoted by chondroitin sulfate-induced “shedding” of the 67-kD cell surface elastin binding protein. Exp Cell Res 203:344–353.

    Article  Google Scholar 

  103. Senior RM, Roman J, Hinek A, Mecham RP. Extracellular matrix components as mediators of inflammation. In:Hand-book of inflammation, Vol 6.-Mediators of Inflammatory process. Hanson PM, Murphy PC (Eds), Elsevier Science Publ, 1989, pp 339–359.

    Google Scholar 

  104. Hinek A, Molossi S, Rabinovitch M. Exploration of the molecular mechanisms leading to upregulation of fibronectin production by the arterial smooth muscle cells. J Cell Sci 1996 (in press).

    Google Scholar 

  105. Wight TN. Vessel proteoglycans and thrombogenesis. In: Spaet TH ed. Progress in hemostasis and thrombosis. New York: Grune and Stratton, 1980;5:1–39.

    Google Scholar 

  106. Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: Its possible role in atherogenesis. Adv Lipid Res 1982;19:1–53.

    PubMed  CAS  Google Scholar 

  107. Berenson GS, Radhakrishnamurthy B, Srinivasan SR, Vijayagopal P, Dalferes ER Jr, Sharma C. Recent advances in molecular pathology. Carbohydrate-protein macromolecules and arterial wall integrity- A role in atherogenesis. Exp Mol Pathol 1984;41:267–87.

    Article  PubMed  CAS  Google Scholar 

  108. Wight TN, Heinegard DK, Hascall VC. Proteoglycans:structure and function. pp 45–78. In Hay, ED. Cell Biology of the extracellular matrix.1991, 2nd Ed., Plenum, New York.

    Chapter  Google Scholar 

  109. Wight TN, Cell Biology of Arterial Proteoglycans. Arteriosclerosis 1989;9:1–20.

    Article  PubMed  CAS  Google Scholar 

  110. Radhakrishnamurthy B, Tracey RE, Fermin CD, Dalferes ER. Immunohistochemical characterization of proteoglycans in human coronary arteriosclerotic lesions (Abstract). FASEB J 1996;10(6):A11140.

    Google Scholar 

  111. Scott JE. Proteoglycan-fibrillar collagen interactions. Biochem J 1988;252:313

    PubMed  CAS  Google Scholar 

  112. Vogel KG, Paulsson M, Heinegard D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 1984;223:587–597.

    PubMed  CAS  Google Scholar 

  113. Fleishmajer R, Fisher LW, MacDonald ED, Jacobs L Jr. Perlish JS, Termine JD. Decorin interacts with fibrillar collagen of embryonic and adult human skin. J Struct Biol 1991;106:82–90.

    Article  Google Scholar 

  114. Yamaguchi Y, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 1990;346:281.

    Article  PubMed  CAS  Google Scholar 

  115. Border WA, Noble NA, Yamamoto T, Harper IR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 1992;360:361–4.

    Article  PubMed  CAS  Google Scholar 

  116. Flaumenhaft R, Rifkin DB. Extracellular matrix regulation of growth factor and protease activity. Curr Opin Cell Biol 1991;3:817–23.

    Article  PubMed  CAS  Google Scholar 

  117. Isaka Y, Brees DK, Ikegaya KO, Kaneda Imai E, Noble NA, Border WA. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nature Med 1996;2:418–423

    Article  PubMed  CAS  Google Scholar 

  118. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury: IV heparin inhibits rat smooth muscle cell mitogenesis and migration. Circ Res 1986;58:839–45.

    Article  PubMed  CAS  Google Scholar 

  119. Farquhar MG. The glomerular basement membrane. A selective macromolecular filter. In: Hay E ed. Cell biology of the extracellular matrix. New York: Plenum Press, 1981:335–378.

    Chapter  Google Scholar 

  120. Woods A, Couchman JR, Johnsson S, Hook M: Adhesion and cytoskeleton: Organization of fibroblasts in response to fibronectin fragments. EMBO J 1986;5:665–70.

    PubMed  CAS  Google Scholar 

  121. Karim MA, Miller DD, Farrar MA, Eleftheriades E, Reddy BH, Breland CM, Samarel AM. Histomorphometric and biochemical correlates of arterial procollagen gene expression during vascular repair after experimental angioplasty. Circulation 1995;91:2049–57.

    Article  PubMed  CAS  Google Scholar 

  122. Laurent GJ. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 1987:252(Cell Physiol 21):C1–9.

    PubMed  CAS  Google Scholar 

  123. Poiani GJ, Tozzi CA, Yohn SE, Pierce RA, Belsky SA, Berg RA, Yu SY, Deak SB, Riley DJ. Collagen and elastin metabolism in hypertensive pulmonary arteries of rats. Circ Res 1990;66:968–978.

    Article  PubMed  CAS  Google Scholar 

  124. Strauss BH, Robinson R, Batchelor WB, Chisholm RJ, Ravi R, Natarajan MK, Logan RA, Mehta SA, Levy DE, Ezrin AM, Keeley FW. In-vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ Res 1996;79:541–550.

    Article  PubMed  CAS  Google Scholar 

  125. Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodelling. FASEB J 1991;5:2145–2154.

    PubMed  CAS  Google Scholar 

  126. Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455–463.

    Article  PubMed  CAS  Google Scholar 

  127. Levy DE, Tang PC, Sweet K, Summers B, Lapierre F, Ezrin AM. A hydroxamic acid matrix metalloproteinase inhibitor blocks the activity of endothelin converting enzyme in anesthetized rats. Med Chem Res 1994;4:547–553.

    CAS  Google Scholar 

  128. Matsumura Y, Ikegawa R, Tsukahara Y, Takaoka M, Morimoto S. Conversion of big endothelin-1 to endothelin-1 by two-types of metalloproteinases of cultured porcine vascular smooth muscle cells. Biochem Biophys Res Commun 1991;178:899–905.

    Article  PubMed  CAS  Google Scholar 

  129. Ikegawa RY, Matsumura Y, Tsukahara M, Takaoka M, Morimoto S. Phosphoramidon inhibits the generation of endothelin-1 from exogenously applied big endothelin-1 in cultured vascular endothelial cells and smooth muscle cells. FEBS Lett 1991;293:45.

    Article  PubMed  CAS  Google Scholar 

  130. Gearing AJH, Beckett P, Christodoulou M, Churchilll M. Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood LM, Woolley K. Processing of tumour necrosis factor-a precursor by metalloproteinases. Nature 1994;370:555–557.

    Article  PubMed  CAS  Google Scholar 

  131. McGeehan GM, Becherer JD, Bast RC Jr, Boyer CM, Champion B, Connolly KM, Conway JG, Furdon P, Karp S, Kidao S, McElroy AB, Nichols J, Pryzwansky KM, Schoenen F, Sekut L, Truesdale A, Verghese M, Warner J, Ways JP. Regulation of tumour necrosis factor-a by a metalloproteinase inhibitor. Nature 1994;370:558–561.

    Article  PubMed  CAS  Google Scholar 

  132. Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS, Torrance DS, Otten-Evans C, Greenstreet T, Weerawama K, Kronhelm SR, Petersen M, Gerhart M, Koziosky CJ, March CJ, Black RA. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 1994;370:218–220.

    Article  PubMed  CAS  Google Scholar 

  133. Malone JD, Richards M, Jeffrey JJ. Recruitment of peripheral mononuclear cells by mammalian collagenase digests type I collagen. Matrix 1991;11:289–295.

    Article  PubMed  CAS  Google Scholar 

  134. Laskin DL, Kimura T, Sakaibara S, Riley DJ, Berg RA. Chemotactic activity of collagen-like polypeptides for human peripheral blood monocytes. J Leuko Biol 1986;39:255–266.

    PubMed  CAS  Google Scholar 

  135. Albini A, Adelmann-Grill BC. Collagenolytic cleavage products of collagen type I as chemoattractants for human dermal fibroblasts. Eur J Cell Biol 1985;36:104–7.

    PubMed  CAS  Google Scholar 

  136. Tanaka H, Sukhova GK, Swanson SJ, Clinton SK, Ganz P, Cybulsky MI, Libby P. Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation 1993;88:1788–1803.

    Article  PubMed  CAS  Google Scholar 

  137. Shi Y, Pieniek M, Fark A, O’Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996;93:340–348.

    Article  PubMed  CAS  Google Scholar 

  138. Srivatsa SS, Reilly TM, Holmes DR Jr, Schwartz RS, Mousa SA. Selective alpha v beta 3 integrin blockade limits neointimal hyperplasia and lumen stenosis in the scented porcine coronary artery injury model. Circulation 1996 In press [abstract]

    Google Scholar 

  139. Huckle WR, Rogers IT, Acker WR, Lodge KE, Egbertson M, Holder DJ, McFall RC, Mayer EJ, Lynch RJ, Hartman GD, Johnson RG. Effects of a GPIlb/IIIa inhibitor in a porcine coronary artery model of vascular restenosis. Circulation 1996. In press [abstract]

    Google Scholar 

  140. Steg PG, Ziol M, Tahlil O, Robert C, Masson P, Pruneau D, Bruneval P, Belichard P. Reduction of intimal hyperplasia by naroparcil, a 4-methylumbelliferyl beta-D-Xyloside analogue, after arterial injury in the hypercholesterolemic rabbit. Circ Res. 1995;77:919–26.

    Article  PubMed  CAS  Google Scholar 

  141. Topol EJ, Calif RM, Weisman HF, et al. Randomized trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. Lancet 1994;343:881–6.

    Article  PubMed  CAS  Google Scholar 

  142. Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA. Production of transforming growth factor beta-1 during repair of arterial injury. J Clin Invest 1991;88:904–910.

    Article  PubMed  CAS  Google Scholar 

  143. Nikol S, Isner JM, Pickering JG, Kearney M, Leclerc G, Weir L. Expression of transforming growth factor-beta-lis increased in human vascular restenosis lesions. J Clin Invest 1992;90:1582–1592.

    Article  PubMed  CAS  Google Scholar 

  144. Nabel EG, Shum L, Pompili V, Yang Z, San H, Shu HB, Liptay S, Gold L, Gordon D, Derynick R, Nabel GJ. Direct transfer of transforming growth factor beta-1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci USA. 1993;90:10759–63.

    Article  PubMed  CAS  Google Scholar 

  145. Okuda S, Languino LR, Ruoshlati E, Border W: Elevated expression of transforming growth factor-P and proteoglycan production in experimental glomerulonephritis. Possible role in expression of the mesangial extracellular matrix. J Clin Invest 1990;86:453–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strauss, B.H., Batchelor, W.B., Robinson, R. (1997). Influence of Angioplasty on Matrix Signalling and Metabolism. In: Lafont, A., Topol, E.J. (eds) Arterial Remodeling: A Critical Factor in Restenosis. Developments in Cardiovascular Medicine, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6079-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6079-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7785-6

  • Online ISBN: 978-1-4615-6079-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics