Skip to main content

Evaluating Extinction Risks in Plant Populations

  • Chapter

Abstract

The ability to predict extinction risks is crucial to answering several recurring questions involving the conservation of plant species. Is a given reserve large enough to support a viable population? Is active intervention necessary to rescue a declining population (e.g., Burgman and Lamont 1992)? Should a small, unprotected population be ignored because it is doomed to extinction? Unfortunately, there are usually insufficient empirical data to answer these questions. One approach in the face of scarce data is the application of viability assessments based on stochastic population modeling. In this chapter, I explore stochastic viability models as a tool for gaining insight into which management regimes might best enhance population viability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Alvarez-Buylla, E.R. 1994. Density dependence and patch dynamics in tropical rain forests: Matrix models and applications to a tree species. American Naturalist 143:155–191.

    Article  Google Scholar 

  • Alvarez-Buylla, E.R. and M. Slatkin. 1991. Finding confidence limits on population growth rates. Trends in Ecology and Evolution 6:221–224.

    Article  CAS  Google Scholar 

  • Alvarez-Buyulla, E.R. and M. Slatkin. 1994. Finding confidence limits on population growth rates: three real examples revised. Ecology 75:255–260.

    Article  Google Scholar 

  • Aplet, G.H., R.D. Laven, and R.B. Shaw. 1994. Application of transition matrix models to the recovery of the rare Hawaiian shrub, Tetramolopium arenarium (Asteraceae). Natural Areas Journal 114:99–106.

    Google Scholar 

  • Beissinger, S.R. 1995. Modeling extinction in periodic environments: Everglades water levels and snail kite population viability. Ecological Applications 5:618–631.

    Article  Google Scholar 

  • Bengtsson, K. 1993. Fumaria procumbens on Öland—population dynamics of a disjunct species at the northern limit of its range. Journal of Ecology 81:745–758.

    Article  Google Scholar 

  • Bierzychudek, P. 1982. The demography of jack-in-the-pulpit, a forest perennial that changes sex. Ecological Monographs 52:335–351.

    Article  Google Scholar 

  • Billington, H.I. 1991. Effect of population size on genetic variation in a dioecious conifer. Conservation Biology 5:115–119.

    Article  Google Scholar 

  • Bullock, J.M., B.C. Hill, and J. Silvertown. 1994. Demography of Cirsium vulgare in a grazing experiment. Journal of Ecology 82:101–111.

    Article  Google Scholar 

  • Burgman, M.A., S. Ferson, and H.R. Akcakaya. 1993. Risk assessment in conservation biology. London: Chapman and Hall.

    Google Scholar 

  • Burgman, M.A. and B.B. Lamont. 1992. A stochastic model for the viability of Banksia cuneata populations: Environmental, demographic, and genetic effects. Journal of Applied Ecology 29:719–727.

    Article  Google Scholar 

  • Burns, B.R. and J. Ogden. 1985. The demography of the temperate mangrove [Aricennia marina (Forsk.) Vierh.] at its southern limit in New Zealand. Australian Journal of Ecology 10:125–133.

    Article  Google Scholar 

  • Carlsson, B.A. and T.V. Callaghan. 1991. Simulation of fluctuating populations of Carex bigelowii tillers classified by type, age, and size. Oikos 60:231–240.

    Article  Google Scholar 

  • Caswell, H. 1983. Phenotypic plasticity in life history traits: Demographic effects and evolutionary consequences. American Zoologist 23:35–46.

    Google Scholar 

  • Caswell, H. 1989. Matrix population models. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Caswell, H. and P. Werner. 1978. Transient behavior and life history analysis of teasel (Dipsacus sylvestris Huds.). Ecology 59:53–66.

    Article  Google Scholar 

  • Chapman, S.B., R.J. Reese, and R.T. Clarke. 1989. The behavior of populations of the marsh gentian (Gentiana pneumonanthe): a modeling approach. Journal of Applied Ecology 26:1059–1072.

    Article  Google Scholar 

  • Cipollini, M.L., D.A. Wallace-Senft, and D.F. Whigmam. 1994. A model of patch dynamics, seed dispersal, and sex ratio in the dioecious shrub Lindera benzoin (Lauraceae). Journal of Ecology 82:621–633.

    Article  Google Scholar 

  • Cochrane, M.E. and S. Ellner. 1992. Simple methods for calculating age-based life history parameters for stage-structured populations. Ecological Monographs 62:345–364.

    Article  Google Scholar 

  • Cohen, J.E. 1979a. Comparative statistics and stochastic dynamics of age-structured populations. Theoretical Population Biology 16:159–171.

    Article  CAS  Google Scholar 

  • Cohen, J.E. 1979b. Long-run growth rates of discrete multiplicative processes in Markovian environments. Journal of Mathematical Analysis and Applications 69:243–251.

    Article  Google Scholar 

  • DeKroon, H., A. Plaiser, J.M. Groenendael, and H. Caswell. 1986. Elasticity as a measure of the relative contribution of demographic parameters to population growth rate. Ecology 67:1427–1431.

    Article  Google Scholar 

  • Doak, D., P. Kareiva, and B. Klepetka. 1994. Modeling population viability for the desert tortoise in the western Mojave dessert. Ecological Applications 4:446–460.

    Article  Google Scholar 

  • Enright, N.J. 1982. The ecology of Araucaria species in New Guinea. III. Population dynamics of sample stands. Australian Journal of Ecology 7:227–237.

    Article  Google Scholar 

  • Enright, N.J. and J. Ogden. 1979. Applications of transition matrix models in forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New Zealand. Australian Journal of Ecology 4:3–23.

    Article  Google Scholar 

  • Enright, N.J. and A.D. Watson. 1991. A matrix population model analysis for the tropical tree Araucaria cunninghamii. Australian Journal of Ecology 16:507–520.

    Article  Google Scholar 

  • Ferson, S. and M.A. Burgman. 1995. Correlations, dependency bounds, and extinction risks. Biological Conservation 73:101–105.

    Google Scholar 

  • Fiedler, P.L. 1987. Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). Journal of Ecology 75:977–995.

    Article  Google Scholar 

  • Fowler, N.L. 1995. Density-dependent demography in two grasses: A five-year study. Ecology 76:2145–2164.

    Article  Google Scholar 

  • Frankel, O.H. and M.E. Soulé. 1981. Conservation and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Franklin, I.R. 1980. Evolutionary change in small populations. In Conservation Biology: an evolutionary-ecological perspective, eds. M.E. Soulé and B.A. Wilcox, 134–150. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Ginzburg, L.R., L.B. Slobodkin, K. Johnson, and A.G. Bindman. 1982. Quasiextinction probabilities as a measure of impact on growth. Risk Analysis 2:171–181.

    Article  Google Scholar 

  • Ginzburg, L.R., S. Ferson, and H.R. Akcakaya. 1990. Reconstructability of density dependence and the conservative assessment of extinction risks. Conservation Biology 4:63–73.

    Article  Google Scholar 

  • Goodman, D. 1987. The demography of chance extinction. In Viable populations for conservation, ed. M.E. Soulé, 11–34. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Guerrant, E.O. 1995. Comparative demography of Erythronium elegans in two populations: One thought to be in decline (Lost Prairie) and one presumably healthy (Mt. Hebo): Interim report on three transitions, or ten years of data. Berry Botanical Garden, Portland, Oregon. 73 pp.

    Google Scholar 

  • Hamrick, J.L., M.J.W. Godt, D.A. Murawski, and M.D. Loveless. 1990. Correlations between species traits and allozyme diversity: Implications for conservation biology. In Genetics and conservation of rare plants. eds. D.A. Falk and K.E. Holsinger, 75–86. New York: Oxford University Press.

    Google Scholar 

  • Hartshorn, G.L. 1975. A matrix model of tree population dynamics. In Tropical ecological systems: Trends in terrestrial and aquatic research, eds. F.B. Golley and E. Medina, 454–461. New York: Springer-Verlag.

    Google Scholar 

  • Hastings, A. and S. Harrison. 1994. Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics 25:167–188.

    Article  Google Scholar 

  • Heschel, M.S. and K.N. Paige. 1995. Inbreeding depression, environmental stress, and population size variation in Scarlet Gilia (Ipomopsis aggregata). Conservation Biology 9:126–133.

    Article  Google Scholar 

  • Holsinger, K.E. 1995. Population biology for policy makers. BioScience (Supplement):S10–S20.

    Google Scholar 

  • Horvitz, C.C. and D.W. Schemske. 1995. Spatiotemporal variation in demographic transitions of a tropical understory herb: Projection matrix analysis. Ecological Monographs 65:155–192.

    Article  Google Scholar 

  • Huenneke, L.F. 1991. Ecological implications of genetic variation in plant populations. In Genetics and conservation of rare plants, eds. D.A. Falk and K.E. Holsinger, 31–44. New York: Oxford University Press.

    Google Scholar 

  • Jain, S.K. 1976. The evolution of inbreeding in plants. Annual Review of Ecology and Systematics 7:469–495.

    Article  Google Scholar 

  • Kalisz, S. and M.A. McPeek. 1992. Demography of an age-structured annual: Resampled projection matrices, elasticity analyses, and seed bank effects. Ecology 73:1082–1093.

    Article  Google Scholar 

  • Karron, J.D. 1987. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evolutionary Ecology 1:47–58.

    Article  Google Scholar 

  • Lande, R. 1988. Genetics and demography in biological conservation. Science 241:1455–1460.

    Article  CAS  Google Scholar 

  • Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142:911–927.

    Article  Google Scholar 

  • Lande, R. 1995. Mutation and conservation. Conservation Biology 9:782–791.

    Article  Google Scholar 

  • Lefkovitch, L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21:1–18.

    Article  Google Scholar 

  • Leigh, E.G., Jr. 1981. The average lifetime of a population in a varving environment. Journal of Theoretical Biology 90:213–239.

    Article  Google Scholar 

  • Lesica, P. and J.S. Shelly. 1995. Effects of reproductive mode on demography and life history in Arabis fecunda (Brassicaceae). American Journal of Botany 82:752–762.

    Article  Google Scholar 

  • Leslie, P.H. 1945. On the use of matrices in certain population mathematics. Biometrika 33:183–212.

    Article  CAS  Google Scholar 

  • Lewontin, R.L. and D. Cohen. 1969. On population growth in a randomly varying environment. Proceedings of the National Academy of Science 62:1056–1060.

    Article  CAS  Google Scholar 

  • Lindenmayer, D.B. and R.C. Lacy. 1995. A simulation study of the impacts of population subdivision on the mountain brushtail possum Trichosurus caninus Ogilby (Phalangeridae: Marsupialia) in south-eastern Australia. 1. Demographic stability and population persistence. Biological Conservation 73:119–129.

    Google Scholar 

  • Lynch, M., J. Conery, and R. Bürger. 1995. Mutation accumulation and the extinction of small populations. American Naturalist 146:489–518.

    Article  Google Scholar 

  • May, R.M. 1973. Stability and complexity of model ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • McCarthy, M.A., M.A. Burgman, and S. Ferson. 1995. Sensitivity analysis for models of population viability. Biological Conservation 73:93–100.

    Google Scholar 

  • Meagher, T.R. 1986. Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of most likely male parents. American Naturalist 128:199–212.

    Article  Google Scholar 

  • Menges, E. 1990. Population viability analysis for an endangered plant. Conservation Biology 4:41–62.

    Article  Google Scholar 

  • Menges, E.S. 1991. The application of minimum viable population theory to plants. In Genetics and conservation of rare plants, eds. D.A. Falk and K.E. Holsinger, 45–61. New York: Oxford University Press.

    Google Scholar 

  • Menges, E.S. and D.R. Gordon. 1996. Three levels of monitoring intensity for rare plant species. Natural Areas Journal 16:227–237.

    Google Scholar 

  • Menges, E.S. and R.W. Dolan. In review. Demographic viability of populations of Silene regia in midwestern prairies: relationships with fire management, genetics, geography, population size, and isolation. Submitted to Journal of Ecology.

    Google Scholar 

  • Moloney, K.A. 1986. A generalized algorithm for determining category size. Oecologia 69:176–180.

    Article  Google Scholar 

  • Nantel, P., D. Gagnon, and A. Nault. 1996. Population viability analysis of American ginseng and wild leek harvested in stochastic environments. Conservation Biology 10:608–621.

    Article  Google Scholar 

  • Nault, A. and D. Gagnon. 1993. Ramet demography of Allium tricoccum, a spring ephemeral, perennial forest herb. Journal of Ecology 81:101–119.

    Article  Google Scholar 

  • Nunney, L. and K.A. Campbell. 1993. Assessing minimum viable population size: Demography meets population genetics. Trends in Ecology and Evology 8:234–240.

    Article  CAS  Google Scholar 

  • O’Conner, T.G. 1993. The influence of rainfall and grazing on the demography of some African savanna grasses: A matrix modeling approach. Journal of Applied Ecology 30:119–132.

    Article  Google Scholar 

  • Olmsted, I. and E.R. Alvarez-Buylla. 1995. Sustainable harvesting of tropical trees: Demography and matrix models of two palm species in Mexico. Ecological Applications 5:484–500.

    Article  Google Scholar 

  • Oostermeijer, J.G.B., M.W. van Eijck, and J.C.M. den Nijs. 1994. Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia 97:289–296

    Google Scholar 

  • Oostermeijer, J.G.B, R. van’t Veer, and J.C.M. den Nijs. 1994. Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. Journal of Applied Ecology 31:428–438

    Article  Google Scholar 

  • Oostermeijer, J.G.B., M.W. van Eijck, N.C. van Leeuwen, and J.C.M. den Nijs. 1995. Analysis of the relationship between allozyme heterozygosity and fitness in the rare Gentiana pneumonanthe L. Journal of Evolutionary Biology 8:739–759

    Article  Google Scholar 

  • Oostermeijer, J.G.B., M.L. Brugman, E.R. de Boer, and J.C. M. den Nijs. 1996. Temporal and spatial demographic variation in the rare perennial herb Gentiana pneumonanthe. Journal of Ecology 84:153–166.

    Article  Google Scholar 

  • Ouborg, N.J. and R. van Treuren. 1994. The significance of genetic erosion in the process of extinction 4. Inbreeding load and heterosis in relation to population size in the mint Salvia pratensis. Evolution 48:996–1008.

    Article  Google Scholar 

  • Pavlik, B.M. 1994. Demographic monitoring and the recovery of endangered plants. In Restoration of endangered species, eds. M.L. Bowles and CJ. Whelan, 322–350. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Pinero, D., M. Martinez-Ramos, and J. Sarukhan. 1984. A population model of Astrocaryum mexicanum and a sensitivity analysis of its finite rate of increase. Journal of Ecology 72:977–991.

    Article  Google Scholar 

  • Possingham, H.P. and I. Davies. 1995. ALEX: A model for the viability analysis of spatially structured populations. Biological Conservation 73:143–150.

    Google Scholar 

  • Prober, S.M. and A.H.D. Brown. 1994. Conservation of the grass box woodlands: Population genetics and fragmentation of Eucalyptus albens. Conservation Biology 8:1003–1013.

    Article  Google Scholar 

  • Raijman, L.E.L., N.C. van Leeuwen, R. Kersten, J.G.B. Oostermeijer, J.C.M. den Nijs, and S.B.J. Menken. 1994. Genetic variation and outcrossing rate in relation to population sizein Gentiana pneumonanthe L. Conservation Biology 8:1014–1026.

    Article  Google Scholar 

  • Schemske, D.W., B.C. Husband, M.H. Ruckelshaus, C. Goodwillie, I.M. Parker, and J.G. Bishop. 1994. Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606.

    Article  Google Scholar 

  • Shaffer, M.L. 1981. Minimum population sizes for species conservation. BioScience 31:131–134.

    Article  Google Scholar 

  • Shaffer, M.L. 1987. Minimum viable populations: Coping with uncertainty. In Viable populations for conservation, ed. M.E. Soulé, 69–86. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Silander, J.A. 1985. The genetic basis of the ecological amplitude of Spartina patens. II. Variance and correlation analysis. Evolution 39:1034–1052.

    Article  Google Scholar 

  • Silva, J.F., J. Raventos, H. Caswell, and M.C. Trevisan. 1991. Population responses to fire in a tropical savanna grass, Andropogon semiberbis: a matrix model approach. Journal of Ecology 79:345–356.

    Article  Google Scholar 

  • Silvertown, J., M. Franco, I. Pisanty, and A. Mendoza. 1993. Comparative plant demography: Relative importance of life cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81:465–476.

    Article  Google Scholar 

  • Silvertown, J., M. Franco, and E. Menges. 1996. Interpretation of elasticity matrices as an aid to the managment of plant populations for conservation. Conservation Biology 10:591–597.

    Article  Google Scholar 

  • Stohlgren, T.J. and P.W. Rundel. 1986. A population model for a long-lived resprouting chaparral shrub: Adenostoma fasciculatum. Ecological Modeling 34:245–257.

    Article  Google Scholar 

  • Tuljapurkar, S.D., and S.H. Orzack. 1980. Population dynamics in variable environments. 1. Long-run growth rates and extinction. Theoretical Population Biology 18:314–342.

    Article  Google Scholar 

  • Vandermeer, J. 1978. Choosing category size in a stage projection matrix. Oecologia 32:79–84.

    Article  Google Scholar 

  • van Groenendael, J.M. and P. Slim. 1988. The contrasting dynamics of two populations of Plantago lanceolata classified by age and size. Journal of Ecology 76:585–599.

    Article  Google Scholar 

  • van Groenendael, J.M., H.D. de Kroon, S. Kalisz, and S. Tuljapurkar. 1994. Loop analysis: Evaluating life history pathways in population projection matrices. Ecology 75:2410–2415.

    Article  Google Scholar 

  • van Treuren, R., B. Bijlsma, W. van Delden, and N.J. Ouborg. 1991. The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189.

    Article  Google Scholar 

  • Werner, P.A. and H. Caswell. 1977. Population growth rates and age vs. size distribution models for teasel (Dipsacus silvestris Huds.). Ecology 58:1103.

    Article  Google Scholar 

  • Widen, B. 1993. Demographic and genetic effects on reproduction as related to population size in a rare, perennial herb, Senecio integrifolius. Biological Journal of the Linnean Society 50:179–195.

    Article  Google Scholar 

  • Wissel, C. And S.H. Zaschke. 1994. Stochastic birth and death processes describing minimum viable populations. Ecological Modeling 75/76:193–201.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Menges, E.S. (1998). Evaluating Extinction Risks in Plant Populations. In: Fiedler, P.L., Kareiva, P.M. (eds) Conservation Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6051-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6051-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-09661-7

  • Online ISBN: 978-1-4615-6051-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics