Skip to main content

Using Molecular Genetics to Learn About the Ecology of Threatened Species: The Allure and The Illusion of Measuring Genetic Structure In Natural Populations

  • Chapter

Abstract

Conservation of threatened and endangered species depends upon understanding the contribution of migration and local demography to population change. Unfortunately, studies of species at risk tend to be plagued by logistic problems, including limited access to populations, small sample sizes, and restrictions prohibiting manipulative experimentation. Thus, even the most basic demographic data (e.g., birth and death rates)—and certainly data regarding migration—can be difficult to acquire. Technological advances such as radio telemetry and geographic positioning systems have improved somewhat our ability to pursue field demography (i.e., McKelvey et al. 1993; Lahaye et al. 1994), but in general studies that employ such technology remain extremely expensive and logistically difficult. In contrast, recent technological advances in molecular population genetics have greatly reduced the cost and simultaneously increased the ease of field genetic studies. For example, the recent development of the polymerase chain reaction (PCR) allows amplification of DNA from tiny skin biopsies, individual hairs, or even scat. These non-intrusive sampling methods mean we can obtain genetic data on highly endangered species without sacrificing a single individual. In addition, easy-to-use computer packages are readily available to translate genetic data from individuals into assessments of population genetic structure (i.e., BIOSYS by Swofford and Selander 1981; GDA by Lewis and Zaykin 1996). Most importantly, the analysis of genetic structure does not require tracking the fate of individuals, or even capturing individuals more than once. Thus, it is not surprising that we know more about the genetic structure of many endangered species than we do about their fundamental demographic processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Allendorf, F.W. 1986. Genetic drift and loss of alleles versus heterozygosity. Zoological Biology 5:181–190.

    Article  Google Scholar 

  • Amos, B., C. Schlotterer, and D. Tautz. 1993. Social structure of pilot whales revealed by analytical DNA profiling. Science 260:670–672.

    Article  CAS  Google Scholar 

  • Ashley, M.V., D.J. Melnick, and D. Western. Conservation genetics of the black rhinoceros (Diceros bicornis), I: Evidence from the mitochondrial DNA of three populations. Conservation Biology 4:71–77.

    Google Scholar 

  • Avise, J.C. 1994. Molecular markers, natural history and evolution. Chapman & Hall, New York, NY

    Google Scholar 

  • Bonnell, M.T. and R.K. Selander. 1974. Elephant seals: Genetic variation and near extinction. Science 184:908–909.

    Article  Google Scholar 

  • Bowen, B., J.C. Avise, J.I. Richardson, A.B. Meylan, D. Margaritoulis, S.R. Hopkins-Murphy. 1993. Population structure of loggerhead turtles (Caretta caretta) in northwestern Atlantic Ocean and Mediterranean sea. Conservation Biology 7:834–844.

    Article  Google Scholar 

  • Crow, J.F. and K. Aoki. 1984. Group selection for a polygenic behavioral trait: Estimating the degree of population subdivision. Proceedings of the National Academy of Sciences 81:6073–6077.

    Article  CAS  Google Scholar 

  • Daly, J.C. and J.L. Patton. 1986. Growth, reproduction, and sexual dimorphism in Thomomys bottae pocket gophers. Journal of Mammalogy 67:256–265.

    Article  Google Scholar 

  • Daly, J.C. and J.L. Patton. 1990. Dispersal, gene flow, and allelic diversity between local populations of Thomomys bottae pocket gophers in the coastal ranges of California. Evolution 44:1283–1294.

    Article  Google Scholar 

  • Dinerstein, E. and G.F. McCracken. 1990. Endangered greater one-horned rhinoceros carry high levels of genetic variation. Conservation Biology 4:417–422.

    Article  Google Scholar 

  • Dunning, J., DJ. Stewart, B.J. Danielson, B.R. Noon, T.L. Root, R.H. Lamberson, and E.E. Stevens. 1995. Spatially explicit population models: current forms and future uses. Ecological Applications 5:3–11.

    Article  Google Scholar 

  • Fahrig, L. and G. Merriam. 1994. Conservation of fragmented populations. Conservation Biology 8:50–59.

    Article  Google Scholar 

  • Felsenstein, J. 1995. Theoretical evolutionary genetics. Seattle: ASUW Publishing.

    Google Scholar 

  • Fleischer, R.C., G. Fuller, and D.B. Ledig. 1995. Genetic structure of endangered Clapper Rail (Rallus longirostris) populations in southern California. Conservation Biology 9:1234–1243.

    Article  Google Scholar 

  • Hall, P., S. Walker, and K. Bawa. 1996. Effect of forest fragmentation on genetic diversity and mating system in a tropical tree, Pithecellobium elegans. Conservation Biology 10:757–7

    Article  Google Scholar 

  • Harris, R.B. and F.W. Aliendorf. 1989. Genetically effective population size of large mammals: an assessment of estimators. Conservation Biology 3:181–191.

    Article  Google Scholar 

  • Harrison, S., A. Stahl, and D. Doak. 1993. Spatial models and spotted owls: exploring some biological issues behind recent events. Conservation Biology 7:950–953.

    Article  Google Scholar 

  • Hartl, D.L. and A.G. Clark. 1989. Principles of population genetics. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Hellberg, M.E. 1994. Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution 48:1829–1854.

    Article  Google Scholar 

  • Hickey, R.J., M.A. Vincent, and S.I. Guttman. 1991. Genetic variation in Running Buffalo Clover (Trifolium stoloniferum, Fabaceae). Conservation Biology 5:309–316.

    Article  Google Scholar 

  • Hillis, D.M., C. Moritz, and B.K. Mable, eds. 1996. Molecular systematics, 2nd Edition, Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Holt, R.D., S.W. Pacala, T.W. Smith, and J. Liu. 1995. Linking contemporary vegetation models with spatially explicit animal population models. Ecological Applications 5:20–27.

    Article  Google Scholar 

  • Husband, B. and S.C.H. Barrett. 1992. Effective population size an genetic drift in tristylous Eichhornia paniculata (Pontederiaceae). Evolution 46:1875–1890.

    Article  Google Scholar 

  • Jong, G. de, J.R. de Ruiter, and R. Haring. 1994. Genetic structure of a population with social structure and migration. In Conservation genetics, eds. V. Loeschcke, J. Tomiuk, and S.K. Jain, 147–164. Basel, Switzerland: Birkhauser Verlag.

    Chapter  Google Scholar 

  • Karl, S.A., B.W. Bowen, and J.C. Avise. 1992. Global population genetic structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analysis of anonymous nuclear loci. Genetics 131:163–173.

    CAS  Google Scholar 

  • Lande, R. and G.F. Barrowclough. 1987. Effective population size, genetic variation, and their use in population management. In Viable populations for conservation, ed. M. Soulé, 87–123. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Lahaye, W., R. Gutierrez, and H. Akcakaya. 1994. Spotted owl metapopulation dynamics in southern California. Journal of Animal Ecology 63:775–785.

    Article  Google Scholar 

  • Leberg, P.L. 1991. Influence of fragmentation and bottlenecks on genetic divergence of wild turkeys. Conservation Biology 5:522–530.

    Article  Google Scholar 

  • Lesica, P. and F.W. Allendorf. 1992. Are small populations of plants worth preserving? Conservation Biology 6:135–139

    Article  Google Scholar 

  • Levinson, G. and G.A. Gutman. 1987. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Molecular Biology and Evolution 4:203–221.

    CAS  Google Scholar 

  • Lewis, P.O. and D. Zaykin. 1996. Genetic data analysis II: Software for the analysis of discrete genetic data. Computer program distributed by the authors.

    Google Scholar 

  • Lynch, M. 1991. Analysis of population genetic structure by DNA fingerprinting. In DNA fingerprinting: approaches and applications, eds. T. Burke, G. Dolf, AJ. Jeffreys, and R. Wolff, 113–126. Basel, Switzerland: Birkhauser Verlag.

    Chapter  Google Scholar 

  • Malecot, G. 1975. Heterozygosity and relationship in a regularly subdivided population. Theoretical Population Biology 8:212–241.

    Article  CAS  Google Scholar 

  • Maruyama, T. 1971. Rate of decrease of genetic variability in a two-dimensional continuous population of finite size. Genetics 70:639–651.

    Google Scholar 

  • McKelvey, K., B.R. Noon, and R.H. Lamberson. 1993. Conservation planning for species occupying fragmented landscapes: the case of the northern spotted owl. In Biotic Interactions and Global Change, eds. P.M. Kareiva, J.G. Kingsolver, and R.B. Huey, 424–450. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Meffe, G.K. and R.C. Vrijenhoek. 1988. Conservation genetics in the management of desert fishes. Conservation Biology 2:157–169.

    Article  Google Scholar 

  • Milligan, B.G., J. Leebens-Mack, and A.E. Strand. Conservation genetics: beyond the maintenance of marker diversity. Molecular Ecology 3:423–435.

    Google Scholar 

  • Nunney, L. 1995. Measuring the ratio of effective population size to adult numbers using genetic and ecological data. Evolution 49:389–392.

    Article  Google Scholar 

  • Nunney, L. and D.R. Elam. 1994. Estimating the effective population size of conserved populations. Conservation Biology 8:175–184.

    Article  Google Scholar 

  • Paetkau, D., W. Calvert, I. Stirling, and C. Strobeck. 1995. Microsatellite analysis of population structure in Canadian polar bears. 1993. Molecular Ecology 4:347–354.

    Article  CAS  Google Scholar 

  • Patton, J.L. and J.H. Feder. 1981. Microspatial genetic heterogeneity in pocket gophers: Non-random breeding and drift. Evolution 35:912–920.

    Article  Google Scholar 

  • Richards, C. and P.L. Leberg. 1996. Temporal changes in allele frequencies and a population’s history of severe bottlenecks. Conservation Biology 10:832–839.

    Article  Google Scholar 

  • Robinson, N.A., N.D. Murray, and W.B. Sherwin. 1993. VNTR loci reveal differentiation between and structure within populations of the eastern barred bandicoot Perameles gunnii. Molecular Ecology 2:195–207.

    Article  Google Scholar 

  • Rohlf, F.J. and G.D. Schnell. 1985. An investigation of the isolation by distance model. American Naturalist 105:295–324.

    Google Scholar 

  • Sangel, P.W., M.R. Lennartz, and M.H. Smith. 1992. Genetic variation and population structure of Red-cockaded woodpeckers. Conservation Biology 6:283–292.

    Article  Google Scholar 

  • Sarre, S. 1995. Mitochondrial DNA variation among populations of Oedura reticulata (Gekkonidae) in remnant vegetation: Implications for metapopulation structure and population decline. Molecular Ecology 4:395–405.

    Article  CAS  Google Scholar 

  • Schlotterer, C. and D. Tautz. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20:211–215.

    Article  CAS  Google Scholar 

  • Sherwin W.B., N.D. Murray, J.A. Marshall Graves, and P.R. Brown. 1991. Measurement of genetic variation in endangered populations: Bandicoots (Marsupialia: Peramelidae) as an example. Conservation Biology 5:103–108.

    Article  Google Scholar 

  • Slatkin, M. 1985a. Rare alleles as indicators of gene flow. Evolution 39:53–65.

    Article  Google Scholar 

  • Slatkin, M. 1985b. Gene flow in natural populations. Annual Review of Ecology and Systematics 16:393–430.

    Article  Google Scholar 

  • Slatkin, M. and N.H. Barton. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368.

    Article  Google Scholar 

  • Slatkin, M. and W.P. Maddison. 1990. A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123:603–613.

    Google Scholar 

  • Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279.

    Article  Google Scholar 

  • Soltis, P.S., D.E. Soltis, T.L. Tucker, and F.A. Lang. 1992. Allozyme variability is absent in the narrow endemic Bensoniella oregona (Saxifragaceae). Conservation Biology 6:131–134.

    Article  Google Scholar 

  • Steinberg, E.K. 1995. A study of genetic differentiation and variation in the Mazama pocket gopher (Thomomys mazama) with an emphasis on Fort Lewis populations. Final Report on Contract #WAFO 100193 submitted to The Nature Conservancy.

    Google Scholar 

  • Steinberg, E.K. and C.E. Jordan. Using individual-based simulation models to design sampling methods and generate explicit testable hypotheses in conservation genetics. In prep.

    Google Scholar 

  • Stone, G.N. and P. Sunnucks. 1993. Genetic consequences of an invasion through a patchy environment—the cynipid gallwasp Andricus quercuscalicis (Hymenoptera: Cynipidae). Molecular Ecology 2:251–268.

    Article  Google Scholar 

  • Stiven, A. E. and R.C. Bruce. 1988. Ecological genetics of the salamander Desmognathus quadramaculatus from disturbed watersheds in the southern Appalachian biosphere reserve cluster. Conservation Biology 2:194–205.

    Article  Google Scholar 

  • Swofford, D.L. and R.B. Selander. 1981. BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72:281–283.

    Google Scholar 

  • Taylor, A.C., W.B. Sherwin, and R.K. Wayne. 1994. Genetic variation of microsatellite loci in a bottlenecked species: The northern hairy-nosed wombat Lasiorhinus krejftii. Molecular Ecology 3:277–290.

    Article  CAS  Google Scholar 

  • Varvio, S., R. Chakraborty, and M. Nei. 1986. Genetic variation in subdivided populations and conservation genetics. Heredity 57:189–198.

    Article  Google Scholar 

  • Waples, R.S. 1989. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391.

    CAS  Google Scholar 

  • Wayne, R.K., N. Lehman, M.W. Allard, and R.L. Honeycutt. 1992. Mitochondrial DNA variability of the gray wolf: Genetic consequences of population decline and habitat fragmentation. Conservation Biology 6:559–569.

    Article  Google Scholar 

  • Weir, B.S. 1996. Genetic Data Analysis II. Sinauer, Sunderland, MA.

    Google Scholar 

  • Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.

    Article  Google Scholar 

  • Wetton, J.H., R.E. Carter, D.T. Parkin, and D. Walters. 1987. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327:147–149.

    Article  CAS  Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97–159.

    CAS  Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics 28:114–138.

    CAS  Google Scholar 

  • Wright, S. 1951. The genetic structure of populations. Annals of Eugenics 15:323–354.

    Article  Google Scholar 

  • Wright, S. 1969. Evolution and the genetics of populations. Vol. 2. The theory of gene frequencies. Chicago: University of Chicago Press.

    Google Scholar 

  • Wright, S. 1978. Evolution and the genetics of populations. Vol. 4. Evolution and the genetics of populations. Chicago: University of Chicago Press.

    Google Scholar 

  • Young, A.G. and H.D. Brown. 1996. Comparative population genetic structure of the rare woodland shrub Daviesia suaveolens and its common congener D. mimosoids. Conservation Biology 10:1220–1228.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Steinberg, E.K., Jordan, C.E. (1998). Using Molecular Genetics to Learn About the Ecology of Threatened Species: The Allure and The Illusion of Measuring Genetic Structure In Natural Populations. In: Fiedler, P.L., Kareiva, P.M. (eds) Conservation Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6051-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6051-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-09661-7

  • Online ISBN: 978-1-4615-6051-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics