Skip to main content

Single Event Upset Error Rates

  • Chapter
Single Event Phenomena

Abstract

This chapter together with Chapter 8 provides the major share of the discussion on the practical aspects of single event upset (SEU). This includes formulas for computing SEU in various particle environments. Section 5.2 discusses SEU calculations for heavy-ion cosmic rays at geosynchronous altitudes and Section 5.3 for Van Allen belt protons. Section 5.4 is on SEU-inducing neutrons at cruising altitudes for high-flying aircraft, and Section 5.5 is on alpha particles in microcircuit chip packages. Finally, Section 5.6 discusses ground-level SEU. The formulas are derived from the fundamentals given in the earlier chapters, and their limitations with regard to applicability are delineated. Also, their evolution as it pertains to an increase in understanding single event phenomena up to present-day concepts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Chlouber, P. O’Neill, and J. Pollack, “General Upper Bound on Single Event Upset Rate,” IEEE Trans. Nucl. Sci. NS-37 (2), 1065–1071 (1990).

    Article  Google Scholar 

  2. E.L. Petersen, J.B. Langworthy, and S.E. Diehl, “Suggested SEU Figure of Merit,” IEEE Trans. Nucl. Sci. NS-30 (6), 4533–4539 (1983).

    Article  Google Scholar 

  3. E.L. Petersen, P. Shapiro, J.H. Adams Jr., and E.A. Burke, “Calculation of Cosmic Ray Induced Soft Upsets and Scaling in VLSI Devices,” IEEE Trans. Nucl. Sci. NS-29 (6), 2055–2063 (1982).

    Article  Google Scholar 

  4. M.D. Petroff, in J.C. Pickel, and J.T. Blandford, “Cosmic Ray Induced Errors in MOS RAMS,” IEEE Trans. Nucl. Sci. NS-27 (2), 1006–1015 (1980), Appendix I. [Errata: NS-27 (6), 1221 (1992).]

    Google Scholar 

  5. J.H. Adams Jr., “Cosmic Ray Effects on Microelectronics, Part IV, Naval Research Labs. NRL Memo Report 5901, 1986.

    Google Scholar 

  6. D.L. Chenette, “Petersen Multipliers for Several SEU Environment Models,” Aerospace Corp. Report AF Systems Command POB 92960, LA 90009, 1986.

    Google Scholar 

  7. D. Binder, “Analytical SEU Rate Calculation Compared with Space Data,” IEEE Trans. Nucl. Sci. NS-35 (6), 1570–1572, (1988).

    Article  Google Scholar 

  8. L.W. Connell, P.J. McDaniel, A.K. Prinja, and F.W. Sexton, “Modeling the Heavy Ion Upset Cross Section,” IEEE Trans. Nucl. Sci. NS-42 (2), 73–82 (1995).

    Article  Google Scholar 

  9. J.N. Bradford, “A Distribution Function for Ion Track Lengths in Rectangular Volumes,” J. Appl. Phys. 50 (6), 3799–3801 (1979).

    Article  Google Scholar 

  10. J.L. Shinn, F.A. Cucinotta, J.W. Wilson, G.D Badhwar, P.M. O’Neill, and F.F.Badavi, “Effects of Target Fragmentation on Evaluation of LET Spectra from Space Radiation in Low Earth Orbit (LEO) Environment: Impact on SEU Predictions,” IEEE Trans Nucl. Sci. NS-42 (6), 2017–2025 (1995).

    Article  Google Scholar 

  11. E.L. Petersen, and E.L. Marshall “Single Event Phenomena in the Space and SDI Areas,” J. Radiat. Effects Res. Eng. (1989).

    Google Scholar 

  12. W.L. Bendel, and E.L. Petersen, “Proton Upsets in Orbit,” IEEE Trans. Nucl. Sci. NS-30 (6) 4481 (1983).

    Article  Google Scholar 

  13. E.G. Stassinopoulos and J.M. Barth, “Non-Equatorial Terrestrial Low Altitude Charged Particle Radiation Environment,” NASA, Goddard SFC Report. No. X601–82–9, 1982.

    Google Scholar 

  14. E.G. Stassinopoulos, “Orbital Radiation Study for Inclined Circular Trajectories,” NASA Goddard SFC, Report No. X-601–81–28, 1981.

    Google Scholar 

  15. W.L. Bendel, and E.L. Petersen, “Predicting Single Event Upsets in the Earth’s Proton Belts,” IEEE Trans. Nucl. Sci. NS-31 (6), 1201–1206 (1984).

    Article  Google Scholar 

  16. G.C. Messenger, “Single Event Upset Considerations for Multiple Particles,” Hardened Electronics and Research and Technology (HEART) Conf., 1985.

    Google Scholar 

  17. T.C. May, “Soft Errors in VLSI: Present and Future,” IEEE Trans. CHMT-2 (4), 377–387 (1979).

    Google Scholar 

  18. W.J. Stapor, J.P. Meyers, J.B. Langworthy, and E.L. Petersen, “Two Parameter Bendel Model Calculations for Predicting Proton-Induced Upsets,” IEEE Trans. Nucl. Sci. NS-37 (6), 1966–1973 (1990).

    Article  Google Scholar 

  19. F.W. Sexton, “Measurement of Single Event Phenomena in Devices and ICs,” IEEE-1992 NSRE Conf. Short Course Syllabus (Chap. 3), 1992.

    Google Scholar 

  20. E.L. Petersen, “The Relationship of Proton and Heavy Ion Upset Thresholds,” IEEE Trans. Nucl. Sci. NS-39 (6), 1600–1604 (1992).

    Article  Google Scholar 

  21. W.L Bendel, and E.L. Petersen, “Proton Upsets in Orbit,” IEEE Trans. Nucl. Sci. NS-30 (6), 4481–4485 (1983).

    Article  Google Scholar 

  22. D.K. Nichols, W.E. Price, L.S. Smith, G.A. Soli, “The Single Event Upset (SEU) Response to 590 MeV Protons,” IEEE Trans. Nucl. Sci. NS-31 (6), 1565–1567 (1984).

    Article  Google Scholar 

  23. J.H. Adams, Jr. C.H. Tsao et. al., “CREME—Cosmic Ray Effects on Microelectronics,” Part I NRL Memo 4506, 1981; Part II NRL Memo 5099, 1983; PartIII NRL Memo 5402, 1984.

    Google Scholar 

  24. J.G. Rollins, “Estimates of Proton Upsets Rates from Heavy Ion Test Data,” IEEE Trans. Nucl. Sci. NS-37 (6), 1961–1965 (1990).

    Article  Google Scholar 

  25. R. Silberberg, C.H. Tsao, and J.R. Letaw, “Neutron Generated Single Event Upsets in the Atmosphere,” IEEE Trans. Nucl. Sci. NS-31 (6), 1183–1185 (1984).

    Article  Google Scholar 

  26. C.S. Dyer, J. Farren, A.J. Sims, J. Stephan, and C. Underwood, “Comparative Measurements of Single Event Upsets and Total Dose Environments Using the CREAM Instruments,” IEEE Trans. Nucl. Sci. NS-39 (3), 413–417 (1992).

    Article  Google Scholar 

  27. C.S. Guenzer, E.A. Wolicki, and R.G. Allas, “Single Event Upset of Dynamic RAMs by Neutrons and Protons,” IEEE Trans. Nucl. Sci. NS-26 (6), 5048–5055 (1979).

    Article  Google Scholar 

  28. C.A. Gossett, B.W. Hughlock, M Katoozi, G.S. LaRue, and S.A. Wender, “Single Event Phenomena in Atmospheric Neutron Environments,” IEEE Trans. Nucl. Sci. NS-40 (6), 1845–1852 (1993).

    Article  Google Scholar 

  29. S. Wender, and A. Gavron, “High Altitude Neutron Simulation,” Executive Summary, H-803 Group P-17, Los Alamos Scientific Laboratory, 1993.

    Google Scholar 

  30. E. Normand, J.L. Wert, W.E. Doherty, D.L. Oberg, P.R. Measel, and T.L. Criswell, “Use of Pu¨CBe Sources to Simulate Neutron Induced Single Event Upset Rates in Static RAMs,” IEEE Trans. Nucl. Sci. NS-35 (6), 1523–1528 (1988).

    Article  Google Scholar 

  31. J.R. Letaw and E. Normand, “Guidelines for Predicting Upsets in Neutron Environments,” IEEE Trans. Nucl. Sci. NS-38 (6), 1500–1506 (1991).

    Article  Google Scholar 

  32. A. Tabor and E. Normand, “Single Event Upsets in Avionics,” IEEE Trans. Nucl. Sci. NS-40 (2), 120 (1993).

    Article  Google Scholar 

  33. J.F. Ziegler and W.A. Lanford, “Effects of Cosmic Rays on Computer Memories,” Science 206 776–788 (1979).

    Article  Google Scholar 

  34. C.H. Tsao, R. Silberberg, and J.R. Letaw, “A Comparison of Neutron Induced SEU Rates in Silicon and Gallium Arsenide Devices,” IEEE Trans. Nucl. Sci. NS-35 (6), 1634–1637 (1988).

    Article  Google Scholar 

  35. C.H. Tsao, R. Silberberg, J.H. Adams Jr., and J.R. Letaw, “Cosmic Ray Effects on Microelectronics,” PartIII Naval Research Laboratory, Memo Report No. 5402, 1984.

    Google Scholar 

  36. E. Normand and W.R. Doherty, “Incorporation of ENDF-V Neutron Cross Section Data for Calculating Neutron Induced Single Event Upsets,” IEEE Trans. Nucl. Sci. NS-36 (6), 2349–2355 (1989).

    Article  Google Scholar 

  37. C.P. Capps and J.P. Raymond, “Aircraft Single Event Upset Phenomena,” Eighth Annual IEEE SEU Symposium, 1992.

    Google Scholar 

  38. T.C. May and M.H. Woods “A New Physical Mechanism for Soft Errors in Dynamic RAMs,” IEEE Reliability Physics (IRPS) Symposium 1978.

    Google Scholar 

  39. T.R. Oldham and J.M. McGarrity, “Worst Case Prediction of Single Particle-Induced Permanent Failures in Microelectronics,” Harry Diamond Labs. HDL-TR1966, 1981.

    Google Scholar 

  40. T.C. May and M.H. Woods, “Alpha Particle Induced Soft Errors in Dynamic Memories,” IEEE Trans. Electron. Dev. ED-26 (1), 2–9 (1979).

    Article  Google Scholar 

  41. A.H. Seidle and L Adams Handbook of Radiation Effects Oxford University Press, Oxford 1993, Appendix B.

    Google Scholar 

  42. G.C. Messenger and M.S. Ash The Effects of Radiation on Electronic Systems 2nd ed., Van Nostrand Reinhold, New York, 1992, Section 3.2.

    Google Scholar 

  43. E.S. Meieran, P.R. Engel, and T.C. May, Proc. IRPS 1979, 1979, pp. 13–22.

    Google Scholar 

  44. R.J. Redman, R. M. Sega, and R. Joseph, “Alpha Particle Induced Soft Errors in Microelectronics Devices I,” Military Electronic Countermeasures 42–47 (1980).

    Google Scholar 

  45. T.J. O’Gorman, “The Effect of Cosmic Rays on the Soft Error Rate of a DRAM at Ground Level,” IEEE Trans. Electron. Dev. ED-41 (4), 553–557, (1994).

    Article  Google Scholar 

  46. J.F. Dicello, “Microelectronics and Microdosimetry,” Nucl. Instrum. Methods in Phys. Res. B24/25 1044–1049 (1987).

    Article  Google Scholar 

  47. J.F. Dicello, M. Paciotti, and M.E. Shillaci, “An Estimate of Error Rates in Integrated Circuits at Aircraft Altitudes and Sea Level,” Nucl. Instrum. Methods in Phys. Res. B40/41 1295–1299 (1989).

    Article  Google Scholar 

  48. J.F. Dicello, M.E. Shillaci, C.W. McCabe, J.D. Doss, M. Paciotti, and P. Berardo, “Meson Interactions in NMOS and CMOS Static RAMs,” IEEE Trans. Nucl. Sci. NS-32 (6), 4201–4205 (1985).

    Article  Google Scholar 

  49. E. Petersen, “Soft Errors Due to Protons in the Radiation Belt,” IEEE Trans. Nucl. Sci. NS-28 (6), 3981–3986 (1981).

    Article  Google Scholar 

  50. G.C. Messenger, “Single Event Considerations for Multiple Particles,” 1985 HEART Conf., 1985.

    Google Scholar 

  51. E.L. Petersen, “Approaches to Proton Single-Event Rate Calculations,” IEEE Trans. Nucl. Sci. NS-43 (2), 496–504 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Messenger, G.C., Ash, M.S. (1997). Single Event Upset Error Rates. In: Single Event Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6043-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6043-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-09731-7

  • Online ISBN: 978-1-4615-6043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics