Skip to main content

Single Event Upset: Experimental

  • Chapter
Single Event Phenomena

Abstract

The discussion in this chapter centers around the major single event upset (SEU) simulation sources. Their importance lies in the fact that simulation methods are one of the few means by which microcircuit susceptibility to SEU can be measured. These sources and source types are few in number, principally because of the somewhat unusual properties of the corresponding particles required for substantive simulation. They must be heavy, as in the medium and high mass number end of the periodic table, ionized, and highly energetic to reasonably simulate cosmic rays incident on spacecraft avionics. For these reasons, the simulation sources are primarily particle accelerators such as synchrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.L. Petersen, J.B. Langworthy, and S.E. Diehl, “Suggested SEU Figure of Merit,” IEEE Trans. Nucl. Sci. NS-30(6), 4533–4539 (1993).

    Google Scholar 

  2. R.M. Bescanson (Ed.) The Encyclopedia of PhysicsVan Nostrand Reinhold, New York, 1974.

    Google Scholar 

  3. R.J. Van de Graaf, J.G. Trump, and W.A. Buechner Rep. Progr. Phys. 111 (1948).

    Article  Google Scholar 

  4. R.J. Van de Graaf Nucl. Instrum. Methods 8195–202 (1960).

    Article  Google Scholar 

  5. NASA Tech Briefs, Winter 1985.

    Google Scholar 

  6. G.C. Messenger, and M.S. Ash The Effects of Radiation on Electronic Systems2nd ed., Van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  7. E.L. Petersen, J.C. Pickel, J.H. Adams Jr. and E.C. Smith, “Rate Prediction for Single Events: A Critique,” IEEE Trans. Nucl. Sci. NS-39(6), 1577–1599 (1992).

    Article  Google Scholar 

  8. D.K. Nichols, L.S. Smith and W.E. Price, “Recent Trends in Parts SEU Susceptibility from Heavy Ions,” IEEE Trans. Nucl. Sci. NS-34(6), 1332–1337 (1987).

    Article  Google Scholar 

  9. ASTM F1192–90, “Standard Guide for Measurement of Single. Event Phenomena Induced by Heavy Ion Irradiation of Semiconductor Devices,” p. 2., April 1990.

    Google Scholar 

  10. P.M. O’Neill and G.D. Badhwar, “SEU for Space Shuttle Flights of New General Purpose Computer Memory Devices,” IEEE Trans. Nucl. Sci. NS-41(5), 1755–1764 (1994).

    Article  Google Scholar 

  11. F.W. Sexton, “Measurement of SEU in Devices and ICs,” I EEE NSRE Conf Short CourseChapter 3, New Orleans, July 13, 1992.

    Google Scholar 

  12. “Survey of Particle Accelerators,” Radiation Effects Information Center, Battelle Mem. Inst. REIC No. 31, 1964.

    Google Scholar 

  13. F.W. Sexton, J.S. Fu, R.A. Kohler, and R. Koga, “SEU Characterization of a Hardened CMOS 64K and 256K SRAM,” IEEE Trans. Nucl. Sci. NS-36(6), 2311–2323 (1989).

    Article  Google Scholar 

  14. J.T. Blandford, Jr., and J.C. Pickel, “Use of Cf-252 to Determine Parameters for SEU Rate Calculations,” IEEE Trans. Nucl. Sci. NS-32(6), 4282–4286 (1985).

    Article  Google Scholar 

  15. Spectrum Sciences Model 5005-TF, Spectrum Sciences Inc., Santa Clara CA.

    Google Scholar 

  16. M. Refer, G. Swift, G. Soli, and B. Blaes, “Cf-252 Time-of Flight System for SEU Testing,” Jet Propulsion Labs., Cal. Tech., Pasadena (unpublished).

    Google Scholar 

  17. J.H. Stephan, T.K. Sanderson, D. Mapper, J. Farren, R. Harboe-Sorensen and L. Adams, “Cosmic Ray Simulation Experiments for the Study of SEU and Latchup in CMOS,” IEEE Trans. Nucl. Sci. NS-30(6), 4464–4469 (1983).

    Article  Google Scholar 

  18. M. Reier, G. Swift, G. Soli, and B. Blaes, “Cf-252 Time-of Flight System for SEU Testing,” Jet Propulsion Labs., Cal. Tech., Pasadena (unpublished).

    Google Scholar 

  19. M. Reier, “An Experimental Measurement of the Energy Loss of Cf-252 Fission Fragments in Air,” Nucl. Instrum. Methods Phys. Res. (Amsterdam) B30503–506 (1988).

    Article  Google Scholar 

  20. D. Mapper, T.K. Sanderson, J.H. Stephan and J. Farren, “An Experimental Study of the Effect of Absorbers on the LET of Cf-252 Fission Particles,” IEEE Trans. Nucl. Sci. NS-32(6), 4276–4281 (1985).

    Article  Google Scholar 

  21. J.S. Browning, “Single Event Correlation Between Heavy Ions and CF-252 Fission Fragments.” Nucl. Instrum. Method. Phys. Res. B43714–717 (1990).

    Article  Google Scholar 

  22. G.C. Messenger and M.S. Ash The Effects of Radiation on Electronic Systems2nd ed., Van Nostrand Reinhold, New York, 1992, Sec 7.7.

    Google Scholar 

  23. M. Reier, “The Use of Cf-252 to Measure Lathchup Cross Section as a Function of LET,” IEEE Trans. Nucl. Sci. NS-33(6), 1642–1645 (1986).

    Article  Google Scholar 

  24. T. Goka, S. Kuboyama, T. Shimano and T. Kawanishi, “The On-Orbit Measurements of Single Event Phenomena by ETS-V Spacecraft,” IEEE Trans. Nucl. Sci. NS-38(6), 1693–1699 (1991).

    Article  Google Scholar 

  25. L. Adams, E.J. Daly, R. Harboe-Sorensen, R. Nickson, J. Haines, W. Schafer, M. Conrad, H. Griech, J. Merkel, T. Schwall and R. Henneck, “A Verified Proton Induced Latchup in Space,” IEEE Trans. Nucl. Sci. NS-39(6), 1804–1808 (1992).

    Article  Google Scholar 

  26. S. Buchner, J.B. Langworthy, W.J. Stapor, A.B. Campbell and S. Rivet, “Implication of the Spacial Dependence of the SEU Threshold in SRAMs Measured With a Pulsed Laser,” IEEE Trans. Nucl. Sci. NS-41(6), 2195–2202 (1994).

    Article  Google Scholar 

  27. A.H. Johnston, “Charge Generation and Collection in P-N Junctions Excited with a Pulsed Infra Red Laser,” IEEE Trans. Nucl. Sci. NS-40(6), 1694–1702 (1993).

    Article  MathSciNet  Google Scholar 

  28. J.S. Melinger, S. Buchner, D. McMurrow, W.J. Stapor, T.R. Weatherford, A.B. Campbell and H. Eisen, “Critical Evaluation of the Pulsed Laser Method For SEU Effects Testing and Fundamental Studies,” IEEE Trans. Nucl. Sci. NS-41(6), 2574–2584 (1994).

    Article  Google Scholar 

  29. S. Pantelides, A. Selloni and R. Cor, “Energy Gap Reduction in Heavily Doped Silicon: Causes and Consequences,” Solid State Electron. 2817 (1985).

    Article  Google Scholar 

  30. ASTM F1192–90, “Standard Guide for Measurement of Single Event Phenomena Induced by Heavy Ion Irradiation of Semiconductor Devices,” p. 2., April 1990.

    Google Scholar 

  31. S. Buchner, A. Knudson, K. Kang and A.B. Campbell, “Charge Collection for Focused Picosecond Laser Pulses,” IEEE Trans. Nucl. Sci. NS-35(6), 1517–1522 (1988).

    Article  Google Scholar 

  32. S. Buchner et al., “Pulsed Laser Facility for Single Event Effects Investigations,” Naval Research Laboratories Advertisement.

    Google Scholar 

  33. Sci. Am., August 1983.

    Google Scholar 

  34. A.R. Knudsen and A.B. Campbell, “Charge Collection in Bipolar Transistors,” IEEE Trans. Nucl. Sci. NS-34(6), 1246–1250 (1987).

    Article  Google Scholar 

  35. J.H. Stephen, T.K. Sanderson, D. Mapper, J. Farren, R. Harboe-Sorensen and L. Adams, “A Comparison of Heavy Ion Sources Used in Cosmic Ray Simulation Studies of VLSI Circuits,” IEEE Trans. Nucl. Sci. NS-31(6), 1069–1072 (1984).

    Article  Google Scholar 

  36. J.F. Ziegler Handbook of Stopping Cross Sections for Energetic Ions in All Elements (in) the Stopping and Ranges of Ions in Matter. Vol. 5 (J. Ziegler, Ed.), Pergamon Press New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Messenger, G.C., Ash, M.S. (1997). Single Event Upset: Experimental. In: Single Event Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6043-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6043-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-09731-7

  • Online ISBN: 978-1-4615-6043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics