Skip to main content

Regulation of the NOS Gene Family

  • Chapter
Nitric Oxide and the Kidney

Abstract

The nitric oxide synthase (NOS) family of proteins catalyze the five-electron oxidation of L-arginine to generate nitric oxide (NO) and L-citrulline [1]. The three prototypical NOS isoforms, neuronal NOS (nNOS or NOS 1), inducible NOS (iNOS or NOS 2), and endothelial NOS (eNOS or NOS 3) are coded for by three distinct genes in the mammalian genome [2-4]. The recent discoveries of genes for new NOS isoforms in lower species [5] suggest that NO plays a role in basic cellular processes, in addition to the complex functions attributed to NO in mammalian cell biology. As there are several excellent reviews discussing the historical perspectives, pharmacology, and biochemistry of NOS and NO, this chapter will focus on recent advances in the molecular regulation of NOS expression [1-6-8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada, S., Palmer, R.M., Higgs, and E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology.Pharmacol. Rev. 43109–142 (1991).

    PubMed  CAS  Google Scholar 

  2. Hall, A.V., Antoniou, H., Wang, Y., Cheung, A.H., Arbus, A.M., Olson, S.L., Lu, W.C., Kau, C.L., and Marsden, P.A. Structural organization of the human neuronal nitric oxide synthase gene (NOS!).J. Biol. Chem. 26933082–33090 (1994).

    PubMed  CAS  Google Scholar 

  3. Chartrain, N.A., Geller, D.A., Koty, P.P., Sitrin, N.F., Nussler, A.K., Hoffman, E.P., Billiar, T.R., Hutchinson, N.I., and Mudgett, J.S. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene.J. Biol. Chem. 2696765–6772 (1994).

    PubMed  CAS  Google Scholar 

  4. Marsden, P.A., Heng, H.H., Scherer, S.W., Stewart, R.J., Hall, A.V., Shi, X.M., Tsui, L.C., and Schappert, K.T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene.J. Biol. Chem. 26817478–17488 (1993).

    PubMed  CAS  Google Scholar 

  5. Regulski, M. and Tully, T. Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase.Proc. Natl. Acad. Sci. USA 929072–9076 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Nathan, C. Nitric oxide as a secretory product of mammalian cells.FASEB J. 63051–3064 (1992).

    PubMed  CAS  Google Scholar 

  7. Nathan, C. and Xie, Q.W. Nitric oxide synthases: Roles, tolls, and controls.Cell 78915–918 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Sessa, W.C. The nitric oxide synthase family of proteins.J. Vasc. Res. 31131–143 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. Kuchan, M.J. and Frangos, J.A. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells.Am. J. Physiol. 266C628–C636 (1994).

    PubMed  CAS  Google Scholar 

  10. Tsukahara, H., Gordienko, D.V., Tonshoff, B., Gelato, M.C., and Goligorsky, M.S. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells.Kidney Int. 45598–604 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. Ayajiki, K., Kindermann, M., Hecker, M., Fleming, I., and Busse, R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells.Circ. Res. 78750–758.

    Google Scholar 

  12. Bredt, D.S, Hwang, P.M., Glatt, C.E., Lowenstein, C., Reed, R.R., and Snyder, S.H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase.Nature 351714–718 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. Nakane, M., Schmidt, H.H., Pollock, J.S., Forstermann, U., and Murad, F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle.FEBS Lett. 316175–180 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. Xie, Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T., and Nathan, C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.Science 256225–228 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. Lyons, C.R., Orloff, G.J., and Cunningham, J.M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line.J. Biol. Chem. 2676370–6374 (1992).

    PubMed  CAS  Google Scholar 

  16. Lowenstein, C.J., Glatt, C.S., Bredt, D.S., and Snyder, S.H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme.Proc. Natl. Acad. Sci. USA 896711–6715 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. Wood, E.R., Berger, H.J., Sherman, P.A., and Lapetina, E.G. Hepatocytes and macrophages express an identical cytokine inducible nitric oxide synthase gene.Biochem. Biophys. Res. Commun. 191767–774 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. Geller, D.A., Lowenstein, C.J., Shapiro, R.A., Nussler, A.K., Di, S.M., Wang, S.C., Nakayama, D.K., Simmons, R.L., Snyder, S.H., and Billiar, T.R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes.Proc. Natl. Acad. Sci. USA 903491–3495 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. Lamas, S., Marsden, P.A., Li, G.K., Tempst, P., and Michel, T. Endothelial nitric oxide synthase: Molecular cloning and characterization of a distinct constitutive enzyme isoform.Proc. Natl. Acad. Sci. USA 896348–6352 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Marsden, P.A., Schappert, K.T., Chen, H.S., Flowers, M., Sundell, C.L., Wilcox, J.N., Lamas, S., and Michel, T. Molecular cloning and characterization of human endothelial nitric oxide synthase.FEBS Lett. 307287–293 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. Sessa, W.C., Harrison, J.K., Barber, C.M., Zeng, D., Durieux, M.E., D’Angelo, D.D., Lynch, K.R., and Peach, M.J. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase.J. Biol. Chem. 26715274–15276 (1992).

    PubMed  CAS  Google Scholar 

  22. Janssens, S.P., Shimouchi, A., Quertermous, T., Bloch, D.B., and Bloch, K.D. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase.J. Biol. Chem. 26714519–14522 (1992). [Erratum:J. Biol. Chem. 267(31); 22694 (1992).]

    PubMed  CAS  Google Scholar 

  23. Nishida, K., Harrison, D.G., Navas, J.P., Fisher, A.A., Dockery, S.P., Uematsu, M., Nerem, R.M., Alexander, R.W., and Murphy, T.J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase.J. Clin. Invest. 902092–2096 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. Xu, W., Charles, LG., Moncada, S., Gorman, P., Sheer, D., Liu, L., and Emson, P. Mapping of the genes encoding human inducible and endothelial nitric oxide synthase (NOS2 and NOS3) to the pericentric region of chromosome 17 and to chromosome 7, respectively.Genomics 21419–422 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. Marsden, P.A., Heng, H.H., Duff, C.L., Shi, X.M., Tsui, L.C., and Hall. A.V. Localization of the human gene for inducible nitric oxide synthase (NOS2) to chromosome 17q11.2–q12.Genomics 19183–185 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. Wang, Y. and Marsden, P.A. Nitric oxide synthases: gene structure and regulation. [Review].Adv. Pharmacol.34, 71–90 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. Vincent, S.R. and Hope, B.T. Neurons that say NO. [Review].Trends Neurosci. 15108–113 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. Young, A.P., Murad, F., Vaessin, H., Xie, J., and Rife, T.K. Transcription of the human neuronal nitric oxide synthase gene in the central nervous system is mediated by multiple promoters. [Review].Adv. Pharmacol.34, 91–112 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. Herdegen, T., Brecht, S., Mayer, B., Leah, J., Kummer, W., Bravo, R., and Zimmermann, M. Long-lasting expression of JUN and KROX transcription factors and nitric oxide synthase in intrinsic neurons of the rat brain following axotomy.J. Neurosci. 134130–4145 (1993).

    PubMed  CAS  Google Scholar 

  30. Zhang, Z.G., Chopp, M., Gautam, S., Zaloga, C., Zhang, R.L., Schmidt, H.H., Pollock, J.S., and Forstermann, U. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat.Brain Res. 65485–95 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. Weiner, C.P., Lizasoain, I., Baylis, S.A., Knowles, R.G., Charles, I.G., and Mon-cada, S. Induction of calcium-dependent nitric oxide synthases by sex hormones.Proc. Natl. Acad. Sci. USA 915212–5216 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. Kadowaki, K., Kishimoto, J., Leng, G., and Emson, P.C. Up-regulation of nitric oxide synthase (NOS) gene expression together with NOS activity in the rat hypothalamo-hypophysial system after chronic salt loading: evidence of a neuromodulatory role of nitric oxide in arginine vasopressin and oxytocin secretion.Endocrinology 1341011–1017 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. North, A.J., Star, R.A., Brannon, T.S., Ujiie, K., Wells, L.B., Lowenstein, C.J., Snyder, S.H., and Shaul, P.W. Nitric oxide synthase type I and type III gene expression are developmentally regulated in rat lung. Am.J. Physiol. 266L635–41 (1994).

    PubMed  CAS  Google Scholar 

  34. Fujisawa, H., Ogura, T., Kurashima, Y., Yokoyama, T., Yamashita, J., and Esumi, H. Expression of two types of nitric oxide synthase mRNA in human neuroblastoma cell lines.J. Neurochem. 63140–145 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. Xie, J., Roddy, P., Rife, T.K., Murad, F., and Young, A.P. Two closely linked but separable promoters for human neuronal nitric oxide synthase gene transcription.Proc. Natl. Acad. Sci. USA 921242–1246 (1995).

    Article  PubMed  CAS  Google Scholar 

  36. Shaul, P.W., North, A.J., Brannon, T.S., Ujiie, K., Wells, L.B., Nisen, P.A., Lowenstein, C.J., Snyder, S.H., and Star, R.A. Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am.J. Respir. Cell Mol. Biol. 13167–174 (1995).

    PubMed  CAS  Google Scholar 

  37. Ogura, T., Yokoyama, T., Fujisawa, H., Kurashima, Y., and Esumi, H. Structural diversity of neuronal nitric oxide synthase mRNA in the nervous system.Biochem. Biophys. Res. Commun. 1931014–1022 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. Nathan, C. and Xie, Q.W. Regulation of biosynthesis of nitric oxide. [Review].J. Biol. Chem. 26913725–12728 (1994).

    PubMed  CAS  Google Scholar 

  39. Silvagno, F., Xia, H., and Bredt, D.S. Neuronal nitric-oxide synthase-m, an alternatively spliced isoform expressed in differentiated skeletal muscle.J. Biol. Chem. 27111204–11208 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H., Peters, M.F., Froehner, S.C., and Bredt, D.S. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and al-syntrophin mediated by PDZ domains.Cell 84757–767 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. Kobzik, L., Reid, M.B., Bredt, D.S., and Stamler, J.S. Nitric oxide in skeletal muscle.Nature 372546–548 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. Brenman, J.E., Chao, D.S., Xia, H., Aldape, K., and Bredt, D.S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy.Cell 82743–752 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. Xie, Q. and Nathan, C. The high-output nitric oxide pathway: role and regulation.J. Leuk. Biol. 56576–782 (1994).

    CAS  Google Scholar 

  44. Forstermann, U., Kleinert, H., Gath, I., Schwarz, P., Closs, E.I., and Dun, N.J. Expression and expressional control of nitric oxide synthases in various cell types.Adv. Pharmacol. 34171–186 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. Nussler, A.K. and Billiar, T.R. Inflammation, immunoregulation, and inducible nitric oxide synthase.J. Leuk. Biol. 54171–178 (1993).

    CAS  Google Scholar 

  46. Guo, F.H., De, R.H., Rice, T.W., Stuehr, D.J., Thunnissen, F.B., and Erzurum, S.C. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo.Proc. Natl. Acad. Sci. USA 927809–7813 (1995).

    Article  PubMed  CAS  Google Scholar 

  47. Kumar, M., Liu, G.J., Floyd, R.A., and Grammas, P. Anoxic injury of endothelial cells increases production of nitric oxide and hydroxyl radicals.Biochem. Biophys. Res. Commun. 219497–501 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. Chu, S.C., Wu, H.P., Banks, T.C., Eissa, N.T., and Moss, J. Structural diversity in the 5’-untranslated region of cytokine-stimulated human inducible nitric oxide synthase mRNA.J. Biol. Chem. 27010625–10630 (1995).

    Article  PubMed  CAS  Google Scholar 

  49. Szabo, C. and Thiemermann, C. Regulation of the expression of the inducible isoform of nitric oxide synthase.Adv. Pharmacol. 34113–153 (1995).

    Article  PubMed  CAS  Google Scholar 

  50. Morris, S.J. and Billiar, T.R. New insights into the regulation of inducible nitric oxide synthesis.Am. J. Physiol. 266E829–39 (1994).

    PubMed  CAS  Google Scholar 

  51. Vodovotz, Y. and Bogdan, C. Control of nitric oxide synthase expression by transforming growth factor-beta: implications for homeostasis.Prog. Growth Factor Res. 5341–351 (1994).

    Article  PubMed  CAS  Google Scholar 

  52. Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q.W., and Nathan, C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta.J. Exp. Med. 178605–613 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. Gilbert, R.S. and Herschman, H.R. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types.Biochem. Biophys. Res. Commun. 195380–384 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. Xie, Q.W., Whisnant, R., and Nathan, C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide.J. Exp. Med. 1771779–1784 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. Lowenstein, C.J., Alley, E.W., Raval, P., Snowman, A.M., Snyder, S.H., Russell, S.W., and Murphy, W.J. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide.Proc. Natl. Acad. Sci. USA 909730–9734 (1993).

    Article  PubMed  CAS  Google Scholar 

  56. Nunokawa, Y., Ishida, N., and Tanaka, S. Promoter analysis of human inducible nitric oxide synthase gene associated with cardiovascular homeostasis.Biochem. Biophys. Res. Commun. 200802–807 (1994).

    Article  PubMed  CAS  Google Scholar 

  57. Xie, Q.W., Kashiwabara, Y., and Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase.J. Biol. Chem. 2694705–4708 (1994).

    PubMed  CAS  Google Scholar 

  58. Martin, E., Nathan, C., and Xie, Q.W. Role of interferon regulatory factor 1 in induction of nitric oxide synthase.J. Exp. Med. 180977–984 (1994).

    Article  PubMed  CAS  Google Scholar 

  59. Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Koh, S.I., Kimura, T., Green, S.J. et al. Requirements for transcription factor IRF-1 in NO synthase induction in macrophages.Science 2631612–1615 (1994).

    Article  PubMed  CAS  Google Scholar 

  60. Melillo, G., Musso, T., Sica, A., Taylor, L.S., Cox, G.W., and Varesio, L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter.J. Exp. Med. 1821683–1693 (1995).

    Article  PubMed  CAS  Google Scholar 

  61. Weisz, A., Oguchi, S., Cicatiello, L., and Esumi, H. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-gamma and bacterial lipopolysaccharide. Transcriptional and post-transcriptional regulation.J. Biol. Chem. 2698324–8333 (1994).

    PubMed  CAS  Google Scholar 

  62. Sands, W.A., Bulut, V., Severn, A., Xu, D., and Liew, F.Y. Inhibition of nitric oxide synthesis by interleukin-4 may involve inhibiting the activation of protein kinase C epsilon.Eur. J. Immunol. 242345–2350 (1994).

    Article  PubMed  CAS  Google Scholar 

  63. Albakri, Q.A. and Stuehr, D.J. Intracellular assembly of inducible NO synthase is limited by nitric oxide-mediated changes in heme insertion and availability.J. Biol. Chem. 2715414–5421 (1996).

    Article  PubMed  CAS  Google Scholar 

  64. Garvey, E.P., Oplinger, J.A., Tanoury, G.J., Sherman, P.A., Fowler, M., Marshall, S., Harmon, M.F., Paith, J.E., and Furfine, E.S. Potent and selective inhibition of human nitric oxide synthases. Inhibition by non-amino acid isothioureas.J. Biol. Chem. 26926669–26676 (1994).

    PubMed  CAS  Google Scholar 

  65. Furfine, E.S., Harmon, M.F., Paith, J.E., Knowles, R.G., Salter, M., Kiff, R.J., Duffy, C., Hazelwood, R., Oplinger, J.A., and Garvey, E.P. Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline.J. Biol. Chem. 26926677–26683 (1994).

    PubMed  CAS  Google Scholar 

  66. Szabo, C., Southan, G.J., and Thiemermann, C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase.Proc. Nad. Acad. Sci. USA 9112472–12476 (1994).

    Article  CAS  Google Scholar 

  67. Nava, E., Palmer, R.M., and Moncada, S. Inhibition of nitric oxide synthesis in septic shock: how much is beneficial?Lancet 3381555–1557 (1991).

    Article  PubMed  CAS  Google Scholar 

  68. Spink, J., Cohen, J., and Evans, T.J. The cytokine responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase. Activation by nuclear factor-kappa B.J. Biol. Chem. 27029541–29547 (1995).

    Article  PubMed  CAS  Google Scholar 

  69. Kanno, K., Hirata, Y., Imai, T., Iwashina, M., and Marumo, F. Regulation of inducible nitric oxide synthase gene by interleukin-1 beta in rat vascular endothelial cells.Am. J. Physiol. 267H2318–24 (1994).

    PubMed  CAS  Google Scholar 

  70. Marczin, N., Papapetropoulos, A., and Catravas, J.D.Tyrosine kinase inhibitors suppress endotoxin-and IL-1 beta-induced NO synthesis in aortic smooth muscle cells. Am. J. Physiol.(1993).

    Google Scholar 

  71. Singh, K., Balligand, J.L., Fischer, T.A., Smith, T.W., and Kelly, R.A. Regulation of cytokine-inducible nitric oxide synthase in cardiac myocytes and microvascular endothelial cells. Role of extracellular signal-regulated kinases 1 and 2 (ERK1/ ERK2) and STAT1 alpha.J. Biol. Chem. 2711111–1117 (1996).

    Article  PubMed  CAS  Google Scholar 

  72. Hirokawa, K., O’Shaughnessy, K., Moore, K., Ramrakha, P., and Wilkins, M.R. Induction of nitric oxide synthase in cultured vascular smooth muscle cells: the role of cyclic AMP.Br. J. Pharmacol. 112396–402 (1994).

    Article  PubMed  CAS  Google Scholar 

  73. Inoue, T., Fukuo, K., Nakahashi, T., Hata, S., Morimoto, S., and Ogihara, T. cGMP upregulates nitric oxide synthase expression in vascular smooth muscle cells.Hypertension 25744–747 (1995).

    Article  PubMed  Google Scholar 

  74. Imai, T., Hirata, Y., Kanno, K., and Marumo, F. Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells.J. Clin. Invest. 93543–549 (1994).

    Article  PubMed  CAS  Google Scholar 

  75. Kleinert, H., Euchenhofer, C., Ihrig-Biedert, I., and Förstermann, U. In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-icB.J. Biol. Chem. 2716039–6044 (1996).

    Article  PubMed  CAS  Google Scholar 

  76. Marczin, N., Papapetropoulos, A., Jilling, T., and Catravas, J.D. Prevention of nitric oxide synthase induction in vascular smooth muscle cells by microtubule depolymerizing agents.Br. J. Pharmacol. 109603–605 (1993).

    Article  PubMed  CAS  Google Scholar 

  77. Hortelano, S., Genaro, A.M., and Bosca, L. Phorbol esters induce nitric oxide synthase and increase arginine influx in cultured peritoneal macrophages.FEBS Lett. 320135–139 (1993).

    Article  PubMed  CAS  Google Scholar 

  78. Hortelano, S., Genaro, A.M., and Bosca, L. Phorbol esters induce nitric oxide synthase activity in rat hepatocytes. Antagonism with the induction elicited by lipopolysaccharide.J. Biol. Chem. 26724937–24940 (1992).

    PubMed  CAS  Google Scholar 

  79. Geng, Y.J., Wu, Q., and Hansson, G.K. Protein kinase C activation inhibits cytokine-induced nitric oxide synthesis in vascular smooth muscle cells.Biochim. Biophys. Acta 1223125–132 (1994).

    Article  PubMed  CAS  Google Scholar 

  80. Sirsjo, A., Soderkvist, P., Sundqvist, T., Carlsson, M., Ost, M., and Gidlof, A. Different induction mechanisms of mRNA for inducible nitric oxide synthase in rat smooth muscle cells in culture and in aortic strips.FEBS Lett. 338191–196 (1994).

    Article  PubMed  CAS  Google Scholar 

  81. Perrella, M.A., Patterson, C., Tan, L., Yet, S., Hsieh, C., Yoshizumi, M., and Lee, M. Suppression of interleukin-1 b-induced nitric-oxide synthase promoter/enhancer activity by transforming growth factor-(31 in vascular smooth muscle cells.J. Biol. Chem. 27113776–13780 (1996).

    Article  PubMed  CAS  Google Scholar 

  82. Kleinert, H., Euchenhofer, C., Ihrig-Biedert, I., and Forstermann, U. Glucocorticoids inhibit the induction of nitric oxide synthase II by down-regulating cytokine-induced activity of transcription factor nuclear factor-kappa B.Mol. Pharmacol. 4915–21 (1996).

    PubMed  CAS  Google Scholar 

  83. de Vera, M., Shapiro, R.A., Nussler, A.K., Mudgett, J.S., Simmons, R.L., Morris, S.J., Billiar, T.R., and Geller, D.A. Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter.Proc. Natl. Acad. Sci. USA 931054–1059 (1996).

    Article  PubMed  Google Scholar 

  84. Furchgott, R.F. and Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature 288373–376 (1980).

    Article  PubMed  CAS  Google Scholar 

  85. Huang, P.L., Huang, Z., Mashimo, H., Bloch, K.D., Moskowitz, M.A., Bevan, J.A., and Fishman, M.C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase.Nature 377239–242 (1995).

    Article  PubMed  CAS  Google Scholar 

  86. Balligrand, J.L., Kelly, R.A., Marsden, P.A., Smith, T.W., and Michel, T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system.Proc. Natl. Acad. Sci. USA 90347–351 (1993).

    Article  Google Scholar 

  87. Balligand, J.L., Kobzik, L., Han, X., Kaye, D.M., Belhassen, L., O’Hara, D.S., Kelly, R.A., Smith, T.W., and Michel, T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes.J. Biol. Chem. 27014582–14586 (1995).

    Article  PubMed  CAS  Google Scholar 

  88. Uematsu, M., Ohara, Y., Navas, J.P., Nishida, K., Murphy, T.J. Alexander, R.W., Nerem, R.M., and Harrison, D.G. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress.Am. J. Physiol. 269C1371–C1378 (1995).

    PubMed  CAS  Google Scholar 

  89. Awolesi, M.A., Sessa, W.C., and Sumpio, B.E. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells.J. Clin. Invest. 961449–1454 (1995).

    Article  PubMed  CAS  Google Scholar 

  90. Sessa, W.C., Pritchard, K., Seyedi, N., Wang, J., and Hintze, T.H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression.Circ. Res. 74349–353 (1994).

    Article  PubMed  CAS  Google Scholar 

  91. Arnal, J.F., Yamin, J., Dockery, S., and Harrison, D.G. Regulation of endothelial nitric oxide synthase mRNA, protein, and activity during cell growth.Am. J. Physiol. 267C1381–C1388 (1994).

    PubMed  CAS  Google Scholar 

  92. Zembowicz, A., Tang, J.L., and Wu, K.K. Transcriptional induction of endothelial nitric oxide synthase type III by lysophosphatidylcholine.J. Biol. Chem.27017006–170010 (1995).

    Article  PubMed  CAS  Google Scholar 

  93. Inoue, N., Venema, R.C., Sayegh, H.S., Ohara, Y., Murphy, T.J., and Harrison, D.G. Molecular regulation of the bovine endothelial cell nitric oxide synthase by transforming growth factor-beta1. Arterioscler. Thromb. Vasc. Biol. 151255–1261 (1995).

    Article  CAS  Google Scholar 

  94. Kostyk, S.K., Kourembanas, S., Wheeler, E.L., Medeiros, D., McQuillan, L.P., D’Amore, P.A., and Braunhut, S.J. Basic fibroblast growth factor increases nitric oxide synthase production in bovine endothelial cells.Am. J. Physiol. 269H1583–H1589 (1995).

    PubMed  CAS  Google Scholar 

  95. Myers, P.R., Minor, Jr., R.L., Guerra, Jr., R., Bates, J.N., and Harrison, D.G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide.Nature 345161–163 (1990).

    Article  PubMed  CAS  Google Scholar 

  96. Smith, C.J., Sun, D., Hoegler, C., Roth, B.S., Zhang, X., Zhao, G., Xu, X.B., Kobari, Y., Pritchard, Jr., K., Sessa, W.C., and Hintze, T.H. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure.Circ. Res. 7858–64 (1996).

    Article  PubMed  CAS  Google Scholar 

  97. Venema, R.C., Nishida, K., Alexander, R.W., Harrison, D.G., and Murphy, T.J. Organization of the bovine gene encoding the endothelial nitric oxide synthase.Biochim. Biophys. Acta 1218413–420 (1994).

    Article  PubMed  CAS  Google Scholar 

  98. Zhang, R., Min, W., and Sessa, W.C. Functional analysis of the human endothelial nitric oxide synthase promoter. Spl and GATA factors are necessary for basal transcription in endothelial cells.J. Biol. Chem. 27015320–15326 (1995).

    Article  PubMed  CAS  Google Scholar 

  99. Tang, J.L., Zembowicz, A., Xu, X.M., and Wu, K.K. Role of Spl in transcriptional activation of human nitric oxide synthase type III gene.Biochem. Biophys. Res. Commun. 213673–680 (1995).

    Article  PubMed  CAS  Google Scholar 

  100. Kanazawa, K., Kawashima, S., Mikami, S., Miwa, Y., Hirata, K., Suematsu, M., Hayashi, Y., Itoh, H., and Yokoyama, M. Endothelial constitutive nitric oxide synthase protein and mRNA increased in rabbit atherosclerotic aorta despite impaired endothelium-dependent vascular relaxation.Am. J. Pathol. 1481949–1956 (1996).

    PubMed  CAS  Google Scholar 

  101. Liao, J.K., Shin, W.S., Lee, W.Y., and Clark, S.L. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase.J. Biol. Chem. 270319–324 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Papapetropoulos, A., Sessa, W.C. (1997). Regulation of the NOS Gene Family. In: Goligorsky, M.S., Gross, S.S. (eds) Nitric Oxide and the Kidney. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6039-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6039-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7768-9

  • Online ISBN: 978-1-4615-6039-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics