Skip to main content

NO in Septic Shock

  • Chapter
Nitric Oxide and the Kidney

Abstract

Despite significant improvements in critical care, septic shock remains the major cause of death in noncoronary intensive care units with an estimated mortality (gram-negative and gram-positive sepsis) ranging between 25% and 75%. Traditionally recognized as a consequence of gram-negative bacteremia, septic shock is also caused by gram-positive organisms, fungi, and probably viruses and parasites. The pattern of prevalence of nosocomial infections has changed over the past 40 years. Gram-negative infections increased notably throughout the 1950s and 1960s, and by the early 1970s, they were responsible for most cases of bacteremia in adults. In the 1980s, there was a resurgence in the frequency of reported gram-positive bacteremia and sepsis. Today, between 30% and 50% of all cases of sepsis (approximately 500,000 per year in the United States) are caused by gram-positive organisms [1]. It has been postulated that the marked increase in the incidence of sepsis and septic shock recognized over the last 15-20 years is secondary to (i) improved life-support technology which keeps intensive care patients with high risk of infection alive for prolonged periods, (ii) the prevalence of immunocompromised patients due to an increased incidence of acquired immunodeficiency syndrome or due to chemotherapy and immunotherapy, and (iii) the increased use of invasive medical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone, R.C.Arch. Intern. Med. 15426–34 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. Bone, R.C., Balk, R.A., Cerra, R.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., Schein, R.M.H., and Sibbald, W.J.Chest 1011644–1655 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. Thiemermann, C. and Vane, J.R. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharide in the rat.Eur. J. Pharmacol. 182591–595 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. Kilbourn, R.G., Jubran, A., Gross, S.S., Griffith, O.W., Levi, R., Adams, J., and Lodato, R.F. Reversal of endotoxin mediated shock by Nc-monomethyl-L-arginine, an inhibitor of nitric oxide synthase.Biochem. Biophys. Res. Commun. 1721132–1138 (1993).

    Article  Google Scholar 

  5. Julou-Schaeffer, G., Gray, G.A., Fleming, I., Schott, C., Parratt, J.R., and Stoclet, J.C. Loss of the vascular responsiveness induced by endotoxin involves L-arginine pathway.Am. J. Physiol. 259H1038–H1043 (1990).

    PubMed  CAS  Google Scholar 

  6. Rees, D.D., Cellek, S., Palmer, R.M.J., and Moncada, S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock.Biochem. Biophys. Res. Commun. 173541–546 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. Curran, R.D., Billiar, T.R., Stuehr, D.J., Ochoa, J.B., Harbrecht, B.G., Flint, S.G., and Simmons, R.L. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein biosynthesis.Ann. Surg. 212462–489 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. Dinerman, J.L., Lowenstein, C.J., and Snyder, S.H. Molecular mechanism of nitric oxide regulation: Potential relevance to cardiovascular disease.Circ. Res. 73217–222 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. Morris, S.M. and Billiar, T.R. New insights into the regulation of inducible nitric oxide synthesis.Am. J. Physiol. 266E829–E839 (1994).

    PubMed  CAS  Google Scholar 

  10. Thiemermann, C. The role of the arginine-nitric oxide pathway in circulatory shock.Adv. Pharmacol. 2845–79 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. Szabo, C. and Thiemermann, C. Regulation of the expression of the inducible form of nitric oxide synthase.Adv. Pharmacol. 34113–154 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Moncada, S. and Higgs, A. The L-arginine-nitric oxide pathway.N. Engl. J. Med. 3292002–2012 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. Kilbourn, R.G. and Griffith, O.W. Overproduction of nitric oxide in cytokine-mediated and septic shock.J. Natl. Cancer Inst. 84827–831 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. Thiemermann, C. Inhibition of induction or activity of nitric oxide synthase: Novel approaches for the therapy of circulatory shock. In:Shock Sepsis and Organ Failure-Nitric Oxide. Eds. Schlag, G. and Redl, H. Springer-Verlag, Berlin, 1995, pp. 30–58.

    Google Scholar 

  15. Higgs, J., Jr., Westenfelder, C., Taintor, R., Vavrin, Z., Kablitz, C., Baranowski, R.L., Ward, J.H., Menlove, R.L., McMurry, M.P., Kushner, J.P., and Samlowski, W.E. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy.J. Clin. Invest. 89867–877 (1992).

    Article  Google Scholar 

  16. Miles, D., Thomsen, L., Balkwill, F., Tharasu, P., and Moncada, S. Association between biosynthesis of nitric oxide and changes in immunological and vascular parameters in patients treated with interleukin-2.Eur.J. Clin. Invest.24287–290 (1994).

    Article  CAS  Google Scholar 

  17. Thiemermann, C., Szabo, C., Mitchell, J.A., and Vane, J.R. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide.Proc. Natl. Acad. Sci. USA 90267–271 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. Szabo, C. and Thiemermann, C. Invited opinion: Role of nitric oxide in hemorrhagic, traumatic and anaphylactic shock and thermal injury.Shock 2145–155 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. Valiance, P. and Moncada, S. Hyperdynamic circulation in cirrhosis: A role for nitric oxide?Lancet 337776–777 (1991).

    Article  Google Scholar 

  20. Wu, C.C., Szabo, C., Chen, S.J., Thiemermann, C., and Vane, J.R. Activation of soluble guanyl cyclase by a factor other than nitric oxide or carbon monoxide contributes to the vascular hyporeactivity to vasoconstrictor agents in the aorta of rats treated with endotoxin.Biochem. Biophys. Res. Commun. 201436–442 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. Kumar, A. and Parrillo, J.E. Nitric oxide in the heart in sepsis. In:Role of Nitric Oxide in Sepsis and ARDS. Update in Intensive Care and Emergency Medicine. Eds. Fink, M.P. and Payen, D. Springer-Verlag, Berlin, 1995, pp. 73–99.

    Google Scholar 

  22. Shah, A.M. Influence of nitric oxide on cardiac systolic and diastolic function. In:Role of Nitric Oxide in Sepsis and ARDS. Update in Intensive Care and Emergency Medicine. Eds. Fink, M.P. and Fayen, D. Springer-Verlag, Berlin, 1995, pp. 100–113.

    Google Scholar 

  23. Lefer, A.M. Cellular actions of nitric oxide on the circulatory system. In:Role of Nitric Oxide in Sepsis and ARDS. Update in Intensive Care and Emergency Medicine. Eds. Fink, M.P. and Payen, D. Springer-Verlag, Berlin, 1995, pp. 114–124.

    Google Scholar 

  24. Brady, A.J.P., Poole-Wilson, P.A., Harding, S.E., and Warren, J.B. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia.Am. J. Physiol. 263H1963–H1966 (1992).

    PubMed  CAS  Google Scholar 

  25. Finkel, M.S., Oddis, C.V., Jacob, T.D., Watkins, S.C., Hattler, B.G., and Simmons, R.L. Negative inotropic effects of cytokines on the heart mediated by nitric oxide.Science 257387–389 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. Szabo, C., Mitchell, J.A., Thiemermann, C., and Vane, J.R. Nitric oxide mediated hyporeactivity to noradrenaline precedes nitric oxide synthase induction in endotoxin shock.Br. J. Pharmacol. 108786–792 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. Nathan, C. Nitric oxide as a secretory product of mammalian cells.FASEB J. 63051–3064 (1992).

    PubMed  CAS  Google Scholar 

  28. Schraufstatter, I.U., Hinshaw, D.B., Hyslop, P.A., Spragg, R.G., and Cochrane, C.G. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate—ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide.J. Clin. Invest. 771312–1320 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. Thies, R.L. and Autor, A.P. Reactive oxygen injury to cultured pulmonary endothelial cells: Mediation by poly (ADP-ribose) polymerase activation causing NAD depletion and altered energy balance.Arch. Biochem. Biophys. 286353–363 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. Zhang, J., Dawson, V.L., Dawson, T.M., and Snyder, S.H. Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity.Science 263687–689 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. Heller, B., Wang, Z.-Q., Wagner, E.F., Radons, J., Btirkle, A., Fehsel, K., Burkart, V., and Kolb, H. Inactivation of the poly (ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells.J. Biol. Chem. 27011176–11180 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. Zingarelli, B., O’Connor, M., Wong, H., Salzman, A., and Szabo, C. Peroxynitritemediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide.J. Immunol. 156350–358 (1996).

    PubMed  CAS  Google Scholar 

  33. Wei, X.Q., Charles, LG., Smith, A., Ure, J., Feng, G.J., Huang, F.P., Xu, D., Muller, W., Moncada, S., and Liew, F.Y. Altered immune responses in mice lacking inducible nitric oxide synthase.Nature (London) 375408–411 (1995).

    Article  CAS  Google Scholar 

  34. MacMicking, J.D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D.S., Traumbauer, M., Stevens, K., Xie, O.W., Sokol, K., Hutchinson, N., Chen, H., and Mudgett, J.S. Altered response to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase.Cell 82641–650 (1995).

    Article  Google Scholar 

  35. Szabo, C., Thiemermann, C., Wu, C.C., Perretti, M., and Vane, J.R. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo.Proc. Nall. Acad. Sci. USA 91271–275 (1994).

    Article  CAS  Google Scholar 

  36. Wu, C.C., Croxtall, J.D., Perretti, M., Bryant, C.E., Thiemermann, C., Flower, R.J., and Vane, J.R. Lipocortin-1 mediates the inhibition by dexamethasone of the induction by endotoxin of nitric oxide synthase in the rat.Proc. Natl. Acad. Sci. USA 923473–3477 (1994).

    Article  Google Scholar 

  37. Szabo, C., Southan, G., Thiemermann, C., and Vane, J.R. The mechanism of induction of the inhibitory effect of polyamines on the induction by endotoxin of nitric oxide synthase. Role of aldehyde metabolites.Br. J. Pharmacol. 113757–766 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. Auguet, M., Longchampt, M.O., Delafotte, S., Gouline-Schulz, J., Chabrier, P.E., and Braquet, P. Induction of nitric oxide synthase by lipoteichoic acid fromStaphylococcus aureusin vascular smooth muscle cells.FEBS Lett. 297183–185 (1992).

    Article  PubMed  CAS  Google Scholar 

  39. Cunha, F.Q., Moss, D.W., Leal, L.M., Moncada, S., and Liew, F.Y. Induction of a macrophage parasiticidal pathway byStaphylococcus aureusand exotoxins through the nitric oxide synthesis pathway.Immunology 78563–567 (1993).

    PubMed  CAS  Google Scholar 

  40. Kengatharan, M., De Kimpe, S., and Thiemermann, C. Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages.B. J. Pharmacol. 1171163–1170 (1996).

    Article  CAS  Google Scholar 

  41. De Kimpe, S.J., Hunter, M., Bryant, C.E., Thiemermann, C., and Vane, J.R. Delayed circulatory failure due to the induction of nitric oxide synthase by lipoteichoic acid fromStaphylococcus aureusin anesthetized rats.Br. J. Pharmacol. 1141317–1323 (1995).

    Article  PubMed  Google Scholar 

  42. Thiemermann, C., Kengatharan, M., and De Kimpe, S.J. Role of nitric oxide in the pathogenesis of gram-positive shock. In:1996 Yearbook of Intensive Care and Emergency Medicine.Ed. Vincent, J.L. Springer-Verlag, Berlin, 1996, pp. 345–357.

    Chapter  Google Scholar 

  43. De Kimpe, S.J., Kengatharan, M., Thiemermann, C., and Vane, J.R. The cell wall components peptidoglycan and lipoteichoic acid fromStaphylococcus aureusact in synergy to cause shock and multiple organ failure.Proc. Natl. Acad. Sci. USA 9210359–10363 (1996).

    Article  Google Scholar 

  44. Cameron, J.S. Acute renal failure in the ITU: The nephrologist’s view. In:Acute Renal Failure in the Intensive Therapy Unit. Eds. Bihari, D. and Neild, G.H. Springer-Verlag, Berlin, 1990, pp. 3–12.

    Chapter  Google Scholar 

  45. Groenwald, A.B.J. Pathogenesis of acute renal failure during sepsis.Nephrol. Dial. Transplant 947–51 (1994).

    Google Scholar 

  46. Vatner, S.F. Effects of hemorrhage on regional blood flow distribution in dogs and primates.J. Clin. Invest. 54225–235 (1974).

    Article  PubMed  CAS  Google Scholar 

  47. Lucas, C.E. The renal response to acute injury and sepsis.Surg. Clin. North Am. 56953–975 (1976).

    PubMed  CAS  Google Scholar 

  48. Arendshorst, W.J. and Navar, L.G. Renal circulation and glomerular hemodynamics. In:Diseases of the Kidney5th ed. Eds. Schrier, R.W. and Gottschalk, C.W. Little, Brown & Co., Boston, 1993, pp. 65–117.

    Google Scholar 

  49. Brenner, M., Schaer, G.L., Mallory, D.L., Suffredini, A.F., and Parrillo, J.E. Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodilution renal vein catheter.Chest 98170–179 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. Henrich, W.L., Hamasaki, Y., Said, S.I., Campbell, W.B., and Cronin, R.E. Dissociation of systemic and renal effects in endotoxemia.J. Clin. Invest. 69691–699 (1982).

    Article  PubMed  CAS  Google Scholar 

  51. Badr, K., Kelley, V.E., Rennke, H.G., and Brenner, B.M. Roles for thromboxane A2 and leukotrienes in endotoxin-induced acute renal failure.Kidney Int.30474–480 (1986).

    Article  PubMed  CAS  Google Scholar 

  52. Meyer, J., Hinder, F., Stothert, J., Jr., Traber, L.D., Herndon, D.N., Flynn, J.T., and Traber, D.L. Increased organ blood flow in chronic endotoxemia is reversed by nitric oxide synthase inhibition.J. Appl. Physiol. 762785–2793 (1994).

    PubMed  CAS  Google Scholar 

  53. Garrison, R.N., Wilson, M.A., Matheson, P.J., and Spain, D.A. Nitric oxide mediates redistribution of intrarenal blood flow during bacteremia.J. Trauma 3990–96 (1995).

    Article  PubMed  CAS  Google Scholar 

  54. Offner, P.J., Robertson, F.M., and Pruitt, B.A., Jr. Effects of nitric oxide inhibitors on regional blood flow in a porcine model of endotoxic shock.J. Trauma 39338–343 (1995).

    Article  PubMed  CAS  Google Scholar 

  55. Booke, M.B., Meyer, J., Lingnau, W., Hinder, F., Traber, L.D., and Traber, D.L. Use of nitric oxide synthase inhibitors in animal models of sepsis.New Horizons 3123–138 (1995).

    PubMed  CAS  Google Scholar 

  56. Cohen, J.J. and Kamm, D.E. Renal metabolism: relation to renal function. In:The Kidney2nd ed. Eds. Brenner, B.M. and Rector, F.C. W.B. Saunders Co., Philadelphia, 1981, p. 147.

    Google Scholar 

  57. Brezis, M., Rosen, S., Silva, P., and Epstein, F.H. Renal ischemia: A new perspective.Kidney Int. 26375–383 (1984).

    Article  PubMed  CAS  Google Scholar 

  58. Brezis, M., Heyman, S.N., Dinour, D., Epstein, F.H., and Rosen, S. Role of nitric oxide in renal medullary oxygenation.J. Clin. Invest. 88390–395 (1991).

    Article  PubMed  CAS  Google Scholar 

  59. Heyman, S.N., Brezis, M., Epstein, F.H., Spokes, K., Silva, P., and Rosen, S. Early renal medullary hypoxic injury from radiocontrast and indomethacin.Kidney Int. 40632–642 (1991).

    Article  PubMed  CAS  Google Scholar 

  60. Agmon, Y. and Brezis, M. Effects of non-steroidal anti-inflammatory drugs on intrarenal blood flow: Selective medullary hypoperfusion.Exp. Nephrol. 1357–363 (1993).

    PubMed  CAS  Google Scholar 

  61. Brezis, M. and Rosen, S. Hypoxia of the renal medulla—its implication for disease.N. Engl. J. Med. 332647–655 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. Cronenwett, J.L. and Lindenauer, S.M. Distribution of intrarenal blood flow during bacterial sepsis.J. Surg. Res. 28132–141 (1978).

    Article  Google Scholar 

  63. Lambalgen, A.A., van, Kraats, A.A., van, Bosse, G.C., van den, Stel, H.V., Straub, J., Donker, A.J., and Thijs, L.G. Renal function and metabolism during endotoxemia in rats—Role of hypoperfusion.Circ. Shock 35164–173 (1991).

    PubMed  Google Scholar 

  64. Edouard, A.R., Degremont, A.C., Duranteau, J., Pussard, E., Berdeaux, A., and Samii, K. Heterogeneous regional vascular responses to simulated transient hypovolemia in man.Intens. Care Med. 20414–420 (1994).

    Article  CAS  Google Scholar 

  65. Churchill, P.C., Bidani, A.K., and Schwartz, M.M. Renal effects of endotoxin in the male rat.Am. J. Physiol. 253F244–F250 (1987).

    PubMed  CAS  Google Scholar 

  66. Lugon, J.R., Boim, M.A., Ramos, O.L., Ajzen, H., and Schor, N. Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int.36570–575 (1989).

    Article  PubMed  CAS  Google Scholar 

  67. Gullichsen, E., Nellimarka, O., Halkola, L., and Niinikoski, J. Renal oxygenation in endotoxin shock in dogs.Crit. Care Med. 17547–550 (1989).

    Article  PubMed  CAS  Google Scholar 

  68. Shimahara, Y., Kono, Y., Tanaka, J., Ozawa, K., Sato, T., Jones, R.T., Cowley, R.A., and Trump, B.F. Pathophysiology of acute renal failure following livingEscherichia coliinjections in rats: High energy metabolism and renal functions.Circ. Shock 21197–205 (1987).

    PubMed  CAS  Google Scholar 

  69. James, P.E., Jackson, S.K., Grinberg, O.Y., and Swartz, H.M. The effects of endotoxin on oxygen consumption of various cell types in vitro: An EPR oximetry study.Free Rad. Biol. Med. 18641–647 (1995).

    Article  PubMed  CAS  Google Scholar 

  70. Linares, H.A. Sepsis related renal morphological alterations and the functional correlates. In:Pathophysiology of Shock Sepsis and Organ Failure. Eds. Schlag, G. and Redl, H. Springer-Verlag, Berlin, 1993, pp. 961–972.

    Chapter  Google Scholar 

  71. Cohen, J.J., Black, A.J., and Wertheim, S.J. Direct effects of endotoxin on the function of the isolated perfused rat kidney.Kidney Int. 371219–1226 (1990).

    Article  PubMed  CAS  Google Scholar 

  72. Macica, C.M., Escalante, B.A., Conners, M.S., and Ferreri, N.R. TNF production by the medullary thick ascending limb of Henle’s loop.Kidney Int. 46113–121 (1994).

    Article  PubMed  CAS  Google Scholar 

  73. Fouqueray, B., Philippe, C., Herbelin, A., Perez, J., Ardaillou, R., and Baud, L. Cytokine formation within rat glomeruli during experimental endotoxemia.J. Am. Soc. Nephrol. 31783–1791 (1993).

    PubMed  CAS  Google Scholar 

  74. Baud, L., Oudinet, J.P., Bens, M., Noe, L., Peraldi, M.N., Rondeau, E., Etienne, J., and Ardaillou, R. Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide.Kidney Int. 351111–1118 (1989).

    Article  PubMed  CAS  Google Scholar 

  75. Mayeux, P.R. and Shah, S.V. Intracellular calcium mediates the cytotoxicity of Lipid-A in LLC-PK, cells.J. Pharm. Exp. Ther. 26647–51 (1993).

    CAS  Google Scholar 

  76. Pinsky, M.R. Clinical studies on cytokines in sepsis: role of serum cytokines in the development of multiple-systems organ failure.Nephrol. Dial. Transplant. 994–98 (1994).

    PubMed  Google Scholar 

  77. Pinsky, M.R., Vincent, J.L., Deviere, J., Alegre, M., Content, J., and Dupont, E. Serum cytokine levels in human septic shock: Relation to multiple-systems organ failure and mortality.Chest 103565–575 (1993).

    Article  PubMed  CAS  Google Scholar 

  78. Hruby, Z.W., Shirota, K., Hothy, S., and Lowry, R.P. Antiserum against tumor necrosis factor-alpha and a protease inhibitor reduce immune glomerular injury.Kidney Int. 4043–51 (1991).

    Article  PubMed  CAS  Google Scholar 

  79. Karkar, A.M., Koshino, Y., Cashman, S.J., Dash, A.C., Bonnefoy, J., Meager, A., and Rees, A.J. Passive immunisation against tumour necrosis factor-alpha and IL-1 beta protects from LPS enhancing glomerular injury in nephrotoxic nephritis in rats.Clin. Exp. Immunol. 90312–318 (1992).

    Article  PubMed  CAS  Google Scholar 

  80. Bertani, T., Abbate, M., Zoja, C., Corna, D., Perico, N., Ghezzi, P., and Remuzzi, G. Tumor necrosis factor induces glomerular damage in the rabbit.Am. J. Pathol. 134419–430 (1989).

    PubMed  CAS  Google Scholar 

  81. Tomosugi, N.I., Cashman, S.J., Hay, H., Pusey, C.D., Evans, D.J., Shaw, A., and Rees, A.J. Modulation of antibody-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-1.J. Immunol.1423083–3090 (1989).

    PubMed  CAS  Google Scholar 

  82. Kohan, D.E. Role of endothelin and tumour necrosis factor in the renal response to sepsis.Nephro. Dial. Transplant. 9(suppl. 4), 73–77 (1994).

    Google Scholar 

  83. Pinsky, M.R. Sepsis and inflammation: The process of dying from a critical illness. In:1996 Yearbook of Intensive Care and Emergency Medicine. Ed. Vincent, J.L. Springer-Verlag, Berlin, 1996, pp. 3–10.

    Chapter  Google Scholar 

  84. Ognibene, F.P., Rosenberg, S.A., Lotze, M., Skibber, J., Parker, M.M., Shelhamer, J.H., and Parrillo, J.E. Interleukin-2 administration causes reversible hemodynamic changes and left ventricular dysfunction similar to those seen in septic shock.Chest 94750–754 (1988).

    Article  PubMed  CAS  Google Scholar 

  85. Fonseca, G.A. and Kilbourn, R.G. Cardiovascular alterations associated with interleukin-2 therapy. In:Role of Nitric Oxide in Sepsis and ARDS. Update in Intensive Care and Emergency Medicine. Eds. Fink, M.P. and Payen, D. Springer-Verlag, Berlin, 1995, pp. 232–252.

    Google Scholar 

  86. Kilbourn, R.G., Gross, S.S., Lodato, R.F., Adams, J., Levi, R., Miller, L.L., Lachmann, L.B., and Griffith, O.W. Inhibition of interleukin-l-alpha-induced nitric oxide synthase in vascular smooth muscle and full reversal of interleukin- 1 -alpha-induced hypotension by N-omega-amino-L-arginine. J.Natl. Cancer Inst. 841008–1016 (1992).

    Article  PubMed  CAS  Google Scholar 

  87. Shalmi, C.L., Dutcher, J.P., Feinfeld, D.A., Chun, K.J., Saleemi, K.R., Freeman, L.M., Lynn, R.I., and Wiernik, P.H. Acute renal dysfunction during interleukin-2 treatment: Suggestion of an intrinsic renal lesion.J. Clin. Oncol. 81839–1846 (1991).

    Google Scholar 

  88. Mercatello, A., Hadj-Aissa, A., Negrier, S., Allaouchiche, B., Coronel, B., Tognet, E., Bret, M., Favrot, M., Pozet, N., Moskovtchenko, J.F., and Philip, T. Acute renal failure with preserved renal plasma flow induced by cancer immunotherapy.Kidney Mt. 40309–314 (1991).

    Article  CAS  Google Scholar 

  89. Feinfeld, D.A., D’Agati, V., Dutcher, J.P., Werfel, S.B., Lynn, R.I., and Wiernik, P.H. Interstitial nephritis in a patient receiving adoptive immunotherapy with recombinant interleukin-2 and lymphokine-activated killer cells.Am. J. Nephrol. 11489–492 (1991).

    Article  PubMed  CAS  Google Scholar 

  90. Memoli, B., De Nicola, L., Libetta, C., Scialo, A., Pacchiano, G., Romano, P., Palmieri, G., Morabito, A., Lauria, R., Conte, G., and Andreucci, V.E. Interleukin2-induced renal dysfunction in cancer patients is reversed by low-dose dopamine infusion.Am. J. Kidney Dis. 2627–33 (1995).

    Article  PubMed  CAS  Google Scholar 

  91. Schlondorff, D., Goldwasser, P., Neuwirth, R., Satriano, J.A., and Clay, K.L. Production of platelet activating factor in glomeruli and cultured glomerular mesangial cells. Am.J. Physiol. 250F1123–F1127 (1986).

    PubMed  CAS  Google Scholar 

  92. Braquet, P., Paubert-Braquet, M., Bourgain, R., Bussolino, F., and Hosford, D. PAF/cytokine auto-generated feedback networks in microvascular immune injury: Consequences in shock, ischemia and graft rejection.I Lipid Med. 175–112 (1989).

    CAS  Google Scholar 

  93. Wang, J. and Dunn, M.J. Platelet activating factor mediates endotoxin-induced acute renal insufficiency.Am. J. Physiol. 253F1283–F1289 (1987).

    PubMed  CAS  Google Scholar 

  94. Badr, K.F., DeBoer, D.K., Takahashi, K., Harris, R.C., Fogo, A., and Jacobson, H.R. Glomerular responses to platelet activating factor in the rat: Role of thromboxane A2.Am. J. Physiol. 256F35–F43 (1989).

    PubMed  CAS  Google Scholar 

  95. Maier, R.V., Hahnel, G.B., and Fletcher, J.R. Platelet activating factor augments tumor necrosis factor and procoagulant activity.J. Surg. Res. 52258–264 (1992).

    Article  PubMed  CAS  Google Scholar 

  96. Szabo, C., Mitchell, J.A., Gross, S.S., Thiemermann, C. and Vane, J.R. Platelet activating factor contributes to the induction of nitric oxide synthase by bacterial lipopolysaccharide.Circ. Res. 73991–999 (1993).

    Article  PubMed  CAS  Google Scholar 

  97. Tonneson, A.S. The kidney in sepsis. In:Pathophysiology of Shock Sepsis and Organ Failure. Eds. Schlag, G. and Redl, H. Springer-Verlag, Berlin, 1993, pp. 973–995.

    Chapter  Google Scholar 

  98. Jackson, E.K., Heidemann, H.T., Branch, R.A., and Gerkens, J.F. Low dose intrarenal infusions of PGE2PGI2and 6-keto PGE, vasodilate and in vivo rat kidney.Circ. Res. 5167–72 (1982).

    Article  PubMed  CAS  Google Scholar 

  99. Bolger, P.M., Eisner, G.M., Ramwell, P.W., Slotkoff, L.M. and Corey, E.J. Renal actions of prostacyclin.Nature (London) 271467–469 (1978).

    Article  CAS  Google Scholar 

  100. Collins, D. and Klotman, P.E. Renin—angiotensin system and arachidonic acid metabolites in acute renal failure. In:Acute Renal Failure3rd ed. Eds.Lazarus, J.M. and Brenner, B.M. Churchill Livingston, New York, 1993, pp. 69–106.

    Google Scholar 

  101. Badr, K.F., Kelley, V.E., Rennke, H.G., and Brenner, B.M. Roles for thromboxane A2 and leukotrienes in endotoxin-induced acute renal failure.Kidney Int. 30474–480 (1986).

    Article  PubMed  CAS  Google Scholar 

  102. Cumming, A.D., McDonald, J.W., Lindsay, R.M., Solez, K., and Linton, A.L. The protective effect of thromboxane synthetase inhibition on renal function in systemic sepsis.Am. J. Kidney Dis. 13114–119 (1989).

    PubMed  CAS  Google Scholar 

  103. Morrow, J.D., Hill, K.E., Burk, R.F., Nammour, T.M., Badr, K.F., and Roberts, L.J., II. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism.Proc. Natl. Acad. Sci. USA 879383–9387 (1990).

    Article  PubMed  CAS  Google Scholar 

  104. Takahashi, K., Nammour, T.M., Fukunaga, M., Ebert, J., Morrow, J.D., Roberts, L.J., II, Hoover, R.L., and Badr, K.F. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2a in the rat: Evidence for interaction with thromboxane A2 receptors.J. Clin. Invest. 90136–141 (1992).

    Article  PubMed  CAS  Google Scholar 

  105. Yanigasawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, K., Goto, Y., and Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells.Nature (London) 332411–415 (1988).

    Article  Google Scholar 

  106. Marsden, P.A., Dorfman, D.M., Collins, T., Brenner, B.M., Orkin, S., and Bailer-man, B.J. Regulated expression of endothelin-1 in glomerular capillary epithelial cells.Am. J. Physiol. 261F117–F125 (1991).

    PubMed  CAS  Google Scholar 

  107. Wilkes, B.M., Susin, M., Mento, P.F., Macica, C.M., Girardi, E.P., Boss, E., and Nord, E.P. Localization of endothelin-like immunoreactivity in rat kidneys.Am.J. Physiol. 260F913–F920 (1991).

    PubMed  CAS  Google Scholar 

  108. Kohan, D.E. Endothelin synthesis by rabbit renal tubule cells.Am. J. Physiol. 261F21–F226 (1991).

    Google Scholar 

  109. Ong, A.C., Jowett, T.P., Scoble, J.E., O’Shea, J.A., Varghese, Z., and Moorhead, J.F. Effect of cyclosporon A on endothelin synthesis by cultured human renal cortical epithelial cells.Nephrol. Dial. Transplant. 8748–753 (1993).

    PubMed  CAS  Google Scholar 

  110. Ong, A.C., Jowett, T.P., Firth, J.D., Burton, S., Karet, F.E., and Fine, L.G. An endothelin-1 mediated autocrine growth loop involved in human renal tubule regeneration.Kidney Int. 48390–401 (1995).

    Article  PubMed  CAS  Google Scholar 

  111. Arai, H., Hori, S., Aramori, I., Ohkubo, H., and Nakamishi, S. Cloning and expression of a cDNA encoding an endothelin receptor.Nature (London) 348730–732 (1990).

    Article  CAS  Google Scholar 

  112. Sakamoto, A., Yanigasawa, M., Sakurai, T., Takuwa, Y., Yanigasawa, H., and Masaki, T. Cloning and functional expression of human cDNA for the ETBendothelin receptor.Biochem. Biophys. Res. Commun. 178656–663 (1991).

    Article  PubMed  CAS  Google Scholar 

  113. Gurbanov, K., Rubinstein, I., Hoffman, A., Better, O.S., and Winaver, J. Effects of endothelin on the distribution of intrarenal blood flow in the rat kidney. (Abstract).J. Am. Soc. Nephrol.6(3), 679 (1995).

    Google Scholar 

  114. Sugiara, M., Snajdar, R.M., Schwartzberg, M., Badr, K.F., and Inagami, T. Identification of two types of specific endothelin receptors in rat mesangial cells.Biochem. Biophys. Res. Commun. 1621396–1401 (1989).

    Article  Google Scholar 

  115. Pernow, J., Bouther, J.-F., Franco-Cereceda, A., Lacroix, J.S., Matran, R., and Lundberg, J.M. Potent selective vasoconstrictor effects of endothelin in the pig kidney in vivo.Acta Physiol. Scand. 134573–574 (1988).

    Article  PubMed  CAS  Google Scholar 

  116. Kon, V. and Badr, K.F. Biological actions and pathophysiologic significance of endothelin in the kidney.Kidney Int. 401–12 (1991).

    Article  PubMed  CAS  Google Scholar 

  117. Pittet, J.F., Morel, D.R., Hemsen, A., Gunning, K., Lacroix, J.S., Suter, P.M., and Lundberg, J.M. Elevated plasma endothelin-1 concentrations are associated with the severity of illness in patients with sepsis.Ann. Surg. 213261–264 (1991).

    Article  PubMed  CAS  Google Scholar 

  118. Takukawa, T., Endo, S., Nakae, H., Kikichi, M., Suzuki, T., Inada, K., and Yoshida, M. Plasma levels of TNFa, endothelin-1 and thrombomodulin in patients with sepsis.Res. Commun. Chem. Pathol. Pharmacol. 84261–269 (1994).

    Google Scholar 

  119. Ruetten, H., Thiemermann, C., and Vane, J.R. Blockade of endothelin receptors with SB209670 aggravates the circulatory failure and the organ injury in endotoxic shock in the anesthetized rat.Br. J. Pharmacol.(in press).

    Google Scholar 

  120. Hellberg, P.O.A. and Källskog, T.O.K. Neutrophil-mediated post-ischemic tubular leakage in the rat kidney.Kidney Int. 36555–561 (1989).

    Article  PubMed  CAS  Google Scholar 

  121. Paller, M.S. Effect of neutrophil depletion on ischemic renal injury in the rat.J. Lab. Clin. Med. 113379–386 (1989).

    PubMed  CAS  Google Scholar 

  122. Thorton, M.A., Winn, R., Alpers, C.E., and Zager, R.A. An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury.Am. J. Pathol. 135509–515 (1989).

    Google Scholar 

  123. Linas, S.L., Whittenburg, D., Parsons, P.E., and Repine, J.E. Mild renal ischemia activates primed neutrophils to cause renal failure.Kidney Int. 42610–616 (1992).

    Article  PubMed  CAS  Google Scholar 

  124. Linas, S.L., Whittenburg, D., and Repine, J.E. Role of neutrophil-derived oxidants and elastase in lipopolysaccharide-mediated renal injury.Kidney Int.39618–623 (1991).

    Article  PubMed  CAS  Google Scholar 

  125. Shultz, P.J., and Raij, L. Endogenously synthesized nitric oxide prevents endotoxininduced glomerular thrombosis.J. Clin. Invest. 901718–1725 (1992).

    Article  PubMed  CAS  Google Scholar 

  126. Zager, R.A. Endotoxemia, renal hypoperfusion, and fever: Interactive risk factors for aminoglycoside and sepsis-associated acute renal failure.Am. J. Kidney Dis. 20223–230 (1992).

    PubMed  CAS  Google Scholar 

  127. Wilcox, C.S., Welch, W.J., Furad, F., Gross, S.S., Taylor, G., Levi, R., and Schmidt, H.H.H.W. Nitric oxide synthase in the macula densa regulates glomerular capillary pressure.Proc. Natl. Acad. Sci. USA 8911993–11997 (1992).

    Article  PubMed  CAS  Google Scholar 

  128. Mundel, P., Bachmann, S., Bader, M., Fischer, A., Kummer, W., Mayer, B., and Kriz, W. Expression of nitric oxide synthase in kidney macula densa cells.Kidney Int. 421017–1019 (1992).

    Article  PubMed  CAS  Google Scholar 

  129. Tojo, A., Gross, S.S., Zhang, L., Tischer, C.C., Schmidt, H.H.H.W., Wilcox, C.S., and Madsen, K.M. Immunocytochemical localisation of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney.J. Am. Soc. Nephrol. 41438–1447 (1994).

    PubMed  CAS  Google Scholar 

  130. Bachmann, S., Bosse, H.M., and Mundel, P. Topography of nitric oxide synthesis by localizing constitutive nitric oxide synthases in mammalian kidney.Am. J. Physiol. 268F885–F898 (1995).

    PubMed  CAS  Google Scholar 

  131. Terada, Y., Tomita, K., Nonoguchi, H., and Marumo, F. Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments.J. Clin. Invest. 90659–665 (1992).

    Article  PubMed  CAS  Google Scholar 

  132. Morrissey, J.J., McCracken, R., Kaneto, H., Vehaskari, M., Montani, D., and Klahr, S. Location of an inducible nitric oxide synthase mRNA in the normal kidney.Kidney Int. 45998–1005 (1994).

    Article  PubMed  CAS  Google Scholar 

  133. Ahn, K.Y., Mohaupt, M.G., Madsen, K.M., and Kone, B.C. In situ hybridization localization of mRNA encoding inducible nitric oxide synthase in rat kidney.Am. J. Physiol. 267F748–F757 (1994).

    PubMed  CAS  Google Scholar 

  134. Pfeilschifter, J., Rob, P., Mülsch, A., Fandrey, J., Vosbeck, K., and Busse, R. Interleukin 1(3 and tumour necrosis factor a induce a macrophage-type of nitric oxide synthase in rat renal mesangial cells.Ear. J. Biochem. 203251–255 (1992).

    Article  CAS  Google Scholar 

  135. Markewitz, B.A., Michael, J.R., and Kohan, D.E. Cytokine-induced expression of a nitric oxide synthase in rat renal tubule cells.J. Clin. Invest. 912138–2143 (1993).

    Article  PubMed  CAS  Google Scholar 

  136. Mohaupt, M.G., Schwöbel, J., Elzie, J.L., Kanna, G.S., and Kone, B.C. Cytokines activate inducible nitric oxide synthase gene transcription in inner medullary collecting duct cells. Am.J. Physiol. 268F770–F777 (1995).

    PubMed  CAS  Google Scholar 

  137. Kone, B.C., Schwöbel, J., Turner, P., Mohaupt, M.G., and Cangro, C.B. Role of NF-KB in the regulation of inducible nitric oxide synthase in an MTAL cell line.Am. J. Physiol. 269F718–F729 (1995).

    PubMed  CAS  Google Scholar 

  138. Ujiie, K., Yuen, J., Hogarth, L., Danziger, R., and Star, R.A. Localization and regulation of endothelial NO synthase mRNA expression in rat kidney. Am.J. Physiol. 267F296–F302 (1994).

    PubMed  CAS  Google Scholar 

  139. Ishii, K., Warner, T.D., Sheng, H., and Murad, F. Endothelin increases cyclic GMP levels in LLC-PK, porcine kidney epithelial cells via formation of an endothelium-derived relaxing factor-like substance.J. Pharm. Exp. Ther. 2591102–1108 (1991).

    CAS  Google Scholar 

  140. Tracey, W.R., Pollock, J.S., Murad, F., Nakane, M., and Förstermann, U. Identification of an endothelial-like type III NO synthase in LLC-PK, kidney epithelial cells.Am. J. Physiol. 266C22–C28 (1994).

    PubMed  CAS  Google Scholar 

  141. Mayeux, P.R., Garner, H.R., Gibson, J.D., and Beanum, V.C. Effect of lipopolysaccharide on nitric oxide synthase activity in rat proximal tubules.Biochem. Pharmacol. 49115–118 (1995).

    Article  PubMed  CAS  Google Scholar 

  142. Yu, L., Gengaro, P.E., Niederberger, M., Burke, T.J., and Schrier, R.W. Nitric oxide: A mediator in rat tubular hypoxia/reoxygenation injury.Proc. Natl. Acad. Sci. USA 911691–1695 (1994).

    Article  PubMed  CAS  Google Scholar 

  143. Petros, A., Bennett, D., and Vallance, P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock.Lancet 3381557–1558 (1991).

    Article  PubMed  CAS  Google Scholar 

  144. Petros, A., Lamb, G., Leone, A., Moncada, S., Bennett, D., and Vallance, P. Effects of a nitric oxide synthase inhibitor in humans with septic shock.Cardiovasc. Res. 2834–39 (1994).

    Article  PubMed  CAS  Google Scholar 

  145. Hutcheson, I.R., Whittle, B.J.R., and Boughton-Smith, N.K. Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat.Br. J. Pharmacol. 101815–820 (1990).

    Article  PubMed  CAS  Google Scholar 

  146. Wright, C.E., Rees, D.D., and Moncada, S. Protective and pathological roles of nitric oxide in endotoxin shock.Cardiovasc. Res. 2648–57 (1992).

    Article  PubMed  CAS  Google Scholar 

  147. Robertson, F.M., Offner, P.J., Ciceri, D.P., Becker, W.K., and Pruitt, B.A., Jr. Detrimental hemodynamic effects of nitric oxide synthase inhibition in septic shock.Arch. Surg. 129149–156 (1994).

    Article  PubMed  CAS  Google Scholar 

  148. Henderson, J.L., Statman, R., Cunningham, J.N., Cheng, W., Damiani, P., Siconolfi, A., and Horovitz, J.H. The effects of nitric oxide inhibition on regional hemodynamics during hyperdynamic endotoxemia.Arch. Surg. 1291271–1274 (1994).

    Article  PubMed  CAS  Google Scholar 

  149. Cobb, Q.P., Natanson, C., Hoffmann, W.D., Lodato, R.F., Banks, S., Koer, C.A., Salomon, M.A., Elin, R.Y., Hosseini, J.M., and Danner, R.L. N-Amino-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin.J. Exp. Med. 1761175–1182 (1992).

    Article  PubMed  CAS  Google Scholar 

  150. Spain, L.A., Wilson, M.A., and Garrison, R.N. Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion.Surgery 116322–330 (1994).

    PubMed  CAS  Google Scholar 

  151. Walder, C.E., Thiemermann, C., and Vane, J.R. The involvement of endothelium-derived relaxing factor on the regulation of renal cortical flow in the rat.Br. J. Pharmacol. 102967–973 (1991).

    Article  PubMed  CAS  Google Scholar 

  152. Moncada, S., Palmer, R.M.J., and Higgs, E.A. Nitric oxide: Physiology, pathophysiology and pharmacology.Pharm. Rev. 43109–142 (1991).

    PubMed  CAS  Google Scholar 

  153. Westberg, G., Shultz, P.J., and Raij, L. Exogenous nitric oxide prevents endotoxininduced glomerular thrombosis in rats.Kidney Int. 46711–716 (1994).

    Article  PubMed  CAS  Google Scholar 

  154. Raij, L. Glomerular thrombosis in pregnancy: Role of L-arginine and nitric oxide pathway.Kidney Int. 45775–781 (1994).

    Article  PubMed  CAS  Google Scholar 

  155. Corbett, J.A., Tilton, R.G., Chang, K., Hasan, K.S., Ido, Y., Wang, J.L., Sweetland, M.A., Lancaster, J.R., Williamson, J.R., and McDaniel, M.L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction.Diabetes 41552–558 (1992).

    Article  PubMed  CAS  Google Scholar 

  156. Ruetten, H., Southan, G.J., Abate, A., and Thiemermann, C. Attenuation of endotoxin-induced organ dysfunction by 1-amino-2-hydroxy-guanine, a potent inhibitor of inducible nitric oxide synthase.Br. J. Pharmacol.(in press).

    Google Scholar 

  157. Garvey, P.E., Oplinger, J.A., Tanoury, G.J., Sherman, P.A., Fowler, M., Marshall, S., Marmon, M.F., Path, J.E., and Furfine, E.S. Potent selective inhibition of human nitric oxide synthases. Inhibition by non-amino acid isothioureas.J. Biol. Chem. 26926669–26676 (1994).

    PubMed  CAS  Google Scholar 

  158. Szabo, C., Southan, G.J., and Thiemermann, C. Beneficial effects and improved survival in rodent models of septic shock with S-methyl-isothiourea sulphate, a potent and selective inhibitor of inducible nitric oxide synthase.Proc. Natl. Acad. Sci. USA 9112472–12476 (1994).

    Article  PubMed  CAS  Google Scholar 

  159. Southan, G.J., Szabo, C., and Thiemermann, C. Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity.Br. J. Pharmacol. 114510–516 (1995).

    Article  PubMed  CAS  Google Scholar 

  160. Thiemermann, C., Ruetten, H., Wu, C.C., and Vane, J.R. The multiple organ dysfunction syndrome caused by endotoxin in the rat: Attenuation of liver dysfunction by inhibitors of nitric oxide synthase.Br. J. Pharmacol. 1662845–2851 (1995).

    Article  Google Scholar 

  161. Nakane, M., Klinghofer, V., Kuk, J.E., Donnelly, J.L., Budzik, G.P., Pollock, J.S., Basha, F., and Carter, G.W. Novel potent and selective inhibitors of inducible nitric oxide synthase.Mol. Pharmacol. 47831–834 (1995).

    PubMed  CAS  Google Scholar 

  162. Southan, G.J., Szabo, C., O’Connor, M.P., Salzmann, A., and Thiemermann, C. Amidines are potent inhibitors of nitric oxide synthase: Preferential inhibition of the inducible isoform.Eur..1. Pharmacol. 291311–318 (1995).

    Article  CAS  Google Scholar 

  163. Wu, C.C., Ruetten, H., and Thiemermann, C. Comparison of the effects of amino-guanidine and N-nitro-L-arginine methyl ester on the multiple organ dysfunction caused by endotoxaemia.Eur. J. Pharmacol.(in press).

    Google Scholar 

  164. .Traber, D.L., Redl, H., Schlag, G., Herndon, D.L., Kimura, R., Prien, T., and Traber, L.D. Cardiopulmonary responses to continuous administration of endotoxin.Am. J. Physiol. 25H833–H839 (1988).

    Google Scholar 

  165. Suffredini, A.F., Fromm, R.E., Parker, M.M., Brenner, M., Kovacs, J.A., Wesley, R.A., and Parrillo, J.E. The cardiovascular responses of normal humans to the administration of endotoxin.N. Engl. J. Med. 32280–287 (1989).

    Article  Google Scholar 

  166. Lingnau, W., McGuire, R., Traber, L.D., and Traber, D.L. Renal function after nitric oxide inhibition in ovine bacterial sepsis (Abstract).Crit. Care Med.22Al22 (1994).

    Google Scholar 

  167. Meyer, J., Hinder, F., Stothert, J., Jr., Traber, L.D., Herndon, D.N., Flynn, J.T., and Traber, D.L. Increased organ blood flow in chronic endotoxemia is reversed by nitric oxide synthase inhibition.J. Appl. Physiol. 762785–2793 (1994).

    PubMed  CAS  Google Scholar 

  168. Meyer, J., Lentz, C.W., Stothert, J.C., Traber, L.D., Herndon, D.N., and Traber, D.L. Effects of nitric oxide synthesis inhibition in hyperdynamic endotoxemia.Crit. Care Med. 22306–312 (1994).

    Article  PubMed  CAS  Google Scholar 

  169. Preiser, J.C. and Vincent, J.L. Nitric oxide involvement in septic shock; Do human beings behave like rodents? In:1996 Yearbook of Intensive Care and Emergency Medicine. Ed. Vincent, J.L. Springer-Verlag, Berlin, 1996, pp. 358–365.

    Chapter  Google Scholar 

  170. Ochoa, J.B., Udekwu, A.O., Billiar, T.R., Curran, R.D., Cerra, F.B., Simmons, R.L., and Peitzman, A.B. Nitrogen oxide levels in patients after trauma and during sepsis.Ann. Surg. 214621–626 (1991).

    Article  PubMed  CAS  Google Scholar 

  171. Evans, T., Carpenter, A., Kinderman, H., and Cohen, J. Evidence of increased nitric oxide production in patients with the sepsis syndrome.Circ. Shock 4177–81 (1993).

    PubMed  CAS  Google Scholar 

  172. Gomez-Jimenez, J., Salgado, A., Mourelle, M., Martin, M.C., Segura, R.M., Peracaula, R., and Moncada, S. L-Arginine-nitric oxide pathway in endotoxemia and human septic shock.Crit. Care Med. 23253–258 (1995).

    Article  PubMed  CAS  Google Scholar 

  173. Wong, H.R., Carcillo, J.A., Burckhart, G., Shah, N., and Janosky, J.E. Increased serum nitrite and nitrate concentrations in children with the sepsis syndrome.Crit. Care Med. 23835–842 (1995).

    Article  PubMed  CAS  Google Scholar 

  174. Jacob, T.D., Ochoa, J.B., Udekwu, A.O., Wilkinson, J., Murray, T., Billiar, T.R., Simmons, R.L., Marion, D.W., and Peitzman, A.B. Nitric oxide production is inhibited in trauma patients.J. Trauma 35590–597 (1993).

    Article  PubMed  CAS  Google Scholar 

  175. Evans, T.G., Rasmussen, K., Wiebke, G., Hibbs, J.B., Jr. Nitric oxide synthesis in patients with advanced HIV infection.Clin. Exp. Immunol. 9783–86 (1994).

    Article  PubMed  CAS  Google Scholar 

  176. Goode, H., Howdle, P., Walker, B., and Webster, N. Nitric oxide synthase activity is increased in patients with sepsis syndrome.Clin. Sci. 88131–133 (1995).

    PubMed  CAS  Google Scholar 

  177. Geller, D.A., Lowenstein, C.J., Shapiro, R.A., Nussler, A.K., Di Silvio, M., and Wang, S.C. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes.Proc. Natl. Acad. Sci. USA 903491–3495 (1993).

    Article  PubMed  CAS  Google Scholar 

  178. Nicolson, A.G., Haites, N.E., McKay, N.G., Wilson, H.M., MacLeod, A.M., and Benjamin, N. Induction of nitric oxide synthase in human mesangial cells.Biochem. Biophys. Res. Commun. 1931269–1274(1993).

    Article  PubMed  CAS  Google Scholar 

  179. Goureau, O., Hicks, D., and Courtois, Y. Human retinal pigmented epithelial cells produce nitric oxide in response to cytokines.Biochem. Biophys. Res. Commun. 198120–126 (1994).

    Article  PubMed  CAS  Google Scholar 

  180. Robbins, R.A., Barnes, P.J., Springall, D.R., Warren, J.B., Kwon, O.J., Buttery, L.D., Wilson, A.J., Geller, D.A., and Polak, J.M. Expression of inducible nitric oxide synthase in human lung epithelial cells.Biochem. Biophys. Res. Commun. 203209–218 (1994).

    Article  PubMed  CAS  Google Scholar 

  181. Watson, D., Donaldson, J., Grover, R., Mottola, D., Guntipalli, K., and Vincent, J.L. The cardiopulmonary effects of 546C88 in human septic shock.Int. Care Med. 21S117 (1995).

    Google Scholar 

  182. Gross, S.S., Stuehr, D.J., Aisaka, K., Jaffe, E.A., Levi, R., and Griffith, O.W. Macrophage and endothelial cell nitric oxide synthesis: cell-type selective inhibition by NG-amino-arginine, NG-nitro-arginine and NG-methyl-arginine Biochem. Biophys. Res. Commun.17096–103 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Millar, C.G.M., Thiemermann, C. (1997). NO in Septic Shock. In: Goligorsky, M.S., Gross, S.S. (eds) Nitric Oxide and the Kidney. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6039-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6039-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7768-9

  • Online ISBN: 978-1-4615-6039-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics