Skip to main content

NO and The Renin System

  • Chapter
Nitric Oxide and the Kidney
  • 82 Accesses

Abstract

The renin—angiotensin—aldosterone cascade plays an important role in the blood pressure, electrolyte, and fluid homeostasis of the organism. The activity of the renin—angiotensin system in the circulation is mainly dependent on the activity of the protease renin, which is considered the key regulator of the system. Renin found in the circulation comes predominantly from the kidneys, where renin is produced primarily by the so-called juxtaglomerular epitheloid (JGE) cells. These cells are located in the media layer of the afferent arterioles adjacent to the vascular poles of the glomeruli [12]. JGE cells develop from vascular smooth cells by a reversible metaplastic transformation [12]. This differentiation is associated by a marked change of cell morphology in a way that numerous granular (renin storage) vesicles of various size and shape appear while the number of myofilaments disappear [1]. The morphologic appearance of the cells becomes more epitheloid rather than smooth muscle cell-like. Which intracellular events trigger and control the shift of smooth muscle cells into JGE cells and back is not yet known. The JGE cells are directly neighbored to four cell types: smooth muscle cells of the afferent arterioles, endothelial cells covering the interior of the afferent arterioles, mesangial cells of the glomeruli, and the macula densa cells. It is conceivable, therefore, that the functions of JGE cells, namely renin synthesis and renin secretion, are essentially modulated by these neighboring cells. In fact, it is known that the macula densa cells exert influence on JGE cells by a yet undefined “macula densa signal” which acts inhibitorily on renin secretion and renin synthesis [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taugner, R., Bührle, C.P., Hackenthal, E., Mannek, E., and Nobiling, R. Morphology of the juxtaglomerular apparatus.Contr. Nephrol. 4376–101 (1984).

    CAS  Google Scholar 

  2. Barajas, L. Anatomy of the juxtaglomerular apparatus.Am. J. Physiol. 236F240–F246 (1979).

    Google Scholar 

  3. Briggs, J.P. and Schnermann, J. Macula densa control of renin secretion and glomerular vascular tone: evidence for common cellular mechanisms.Renal Physiol. 9193–203 (1986).

    PubMed  CAS  Google Scholar 

  4. Skott, O. and Briggs, J.P. Direct demonstration of macula densa mediated renin release.Science 2371618–1620 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. Hackenthal, E., Paul, M., Ganten, D., Taugner, R. Morphology, physiology, and molecular biology of renin secretion.Physiol. Rev. 701067–1116 (1990).

    PubMed  CAS  Google Scholar 

  6. Tufro-McReddie, A., Chevalier, R.L., Everett, A.D., and Gomez, R.A. Decreased perfusion pressure modulates renin and ANGII type 1 receptor gene expression in the rat kidney. Am.J. Physiol. 264R696–R702 (1993).

    PubMed  CAS  Google Scholar 

  7. Atlas, D., Melamend, E., and Lahav, M. Beta-adrenergic receptors in rats kidney.Lab. Invest. 36464–468 (1977).

    Google Scholar 

  8. Kurtz, A., Kaissling, B., Busse, R., and Baier, W. Endothelial cells modulate renin secretion from isolated juxtaglomerular cells.J. Clin. Invest. 881147–1154 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. Bachmann, S., Bosse, H.M., and Mundel, P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney.Am. J. Physiol. 268F885–F898 (1995).

    PubMed  CAS  Google Scholar 

  10. Wilcox, C.S., Welch, W.J., Murad, F., Gross, S.S., Taylor, G., Levi, R., Schmidt, H.H.H.W. Nitric oxide synthase in macula densa regulates glomerular capillary pressure.Proc. Natl. Acad. Sci. USA 8911993–11997 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. Mundel, P., Bachmann, S., Bader, M., Fischer, A., Kummer, W., Mayer, B., and Kriz, W. Expression of nitric oxide synthase in kidney macula densa cells.Kidney Int. 421017–1019 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. Shultz, P.J., Archer, S.L., and Rosenberg, M.E. Inducible nitric oxide synthase mRNA and activity in glomerular mesangial cells.Kidney Int. 46683–689 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. Ahn, K.Y., Mohaupt, M.G., Madsden, K.M., and Kone, B.C. In situ hybridization of mRNA encoding inducible nitric oxide synthase in rat kidney.Am.J. Physiol. 267F748–F757 (1994).

    PubMed  CAS  Google Scholar 

  14. Morrissey, J.J., McCracken, R., Kaneto, H., Vehaskari, M., Montani, D., and Klahr, S. Location of an inducible nitric oxide synthase mRNA in the normal kidney.Kidney Int. 45998–1005 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. Tojo, A., Gross, S.S., Zhang, L., Tisher, C.C., Schmidt, H.H.H.W., Wilcox, C.S., and Madsden, K.M. Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney.J. Am. Soc. Nephrol. 4S1438–S1447 (1994).

    Google Scholar 

  16. Hof, R.P., Evenou, J.P., and Hof-Miyashita, A. Similar increases in circulating renin after equihypotensive doses of nitroprusside, diihydralazine or isradipine in conscious rabbits.Eur. J. Pharmacol. 136251–254 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, R.A., and Freeman, R.H. 1994. Renin release in rats during blockade of nitric oxide synthesis.Am. J. Physiol. 266R1723–R1729 (1994).

    PubMed  CAS  Google Scholar 

  18. Shultz, P.J. and Tolins, J.P. Adaptation to increased dietary salt intake in the rat.J. Clin. Invest. 91642–650 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. Dewan, S., Majid, A., and Navar, G.L. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney.Am. J. Physiol. 262F40–F46 (1992).

    Google Scholar 

  20. Sigmon, D.H., Carretero, O.A., and Beierwaltes, W.H. Endothelium-derived relaxing factor regulates renin release in vivo.Am. J. Physiol. 263F256–F261 (1992).

    PubMed  CAS  Google Scholar 

  21. Schricker, K., Della Bruna, R., Hamann, M., and Kurtz, A. Endothelium derived relaxing factor is involved in the pressure control of renin gene expression in the kidney.Pflügers Arch. 428261–268 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. Bosse, H.M., Böhm, R., Resch, S., and Bachmann, S. Parallel regulation of constitutive nitric oxide synthase and renin at the juxtaglomerular apparatus of rat kidney under various stimuli.Am. J. Physiol. 269F793–F805.

    Google Scholar 

  23. Johnson, R.A. and Freeman, R.H. Sustained hypertension in the rat induced by chronic blockade of nitric oxide production.Am. J. Hyperten. 5919–922 (1992).

    CAS  Google Scholar 

  24. Naess, P.A., Christensen, G., Kirkeboen, K.A., and Kiil, F. Effect on renin release of inhibiting renal nitric oxide synthsis in anaesthetized dogs.Acta Physiol. Scand. 148137–142 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. Beierwaltes, W.H. Selective neuronal nitric oxide synthase inhibition blocks furosemide-stimulated renin secretion in vivo.Am. J. Physiol. 269F134–F139 (1995).

    PubMed  CAS  Google Scholar 

  26. Persson, P.B., Baumann, J.E., Ehmke, H., Hackenthal, E., Kirchheim, H.R., and Nafz, B. Endothelium-derived NO stimulates pressure-dependent renin release in conscious dogs.Am. J. Physiol. 264F943–F947 (1993).

    PubMed  CAS  Google Scholar 

  27. Delacretaz, E., Zanchi, A., Nussberger, J., Hayoz, D., Aubert, J.F., Brunner, H.R., and Waeber, B. Chronic nitric oxide synthase inhibition and carotid artery distensability in renal hypertensive rats.26332–336 (1995).

    CAS  Google Scholar 

  28. Schricker, K., Hegyi, I., Hamann, M., Kaissling, B., and Kurtz, A. Tonic stimulation of renin gene expression by nitric oxide is counteracted by tonic inhibition through angiotensin II.Proc. Natl. Acad. Sci. USA 928006–8010 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. Schricker, K., Hamann, M., and Kurtz, A. Nitric oxide and prostaglandins are involved in the macula densa control of the renin system.Am. J. Physiol. 269F825–F830.

    Google Scholar 

  30. Schricker, K. and Kurtz, A. Blockade of nitric oxide formation inhibits the stimulation of the renin system by low salt intake.Pflügers Arch. 432187–189.

    Google Scholar 

  31. Furchgott, R.E. Role of endothelium in responses of vascular smooth muscle cells.Circ. Res. 53557–573 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. Scholz, H. and Kurtz, A. Endothelium derived relaxing factor is involved in the pressure control of renin secretion from the kidneys.J. Clin. Invest. 911088–1094 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. Münter, K. and Hackenthal, E. The participation of the endothelium in the control of renin release.J. Hyperten. 9S236–S237 (1991).

    Google Scholar 

  34. Gardes, J., Poux, J.M., Gonzales, M.F., Alhenc-Gelas, F., and Menard, J. Decreased renin release and constant kallikrein secretion after injection of L-Name in isolated perfused rat kidney.Life Sci. 50987–993 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. Gardes, J., Gonzales, M.F., Alhenc-Gelas, F., and Menard, J. Influence of sodium diet on L-Name effects on renin release and renal vasoconstriction. Am.J. Physiol. 267F798–F804 (1994).

    PubMed  CAS  Google Scholar 

  36. Vidal, M.J., Romero, J.C., and Vanhoutte, P.M. Endothelium-derived relaxing factor inhibits renin release.Eur. J. Pharmacol. 149401–402 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. Beierwaltes, W.H. and Carretero, O.A. Nonprostanoid endothelium-derived factors inhibit renin release.Hypertension 19II68–II73 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. Schricker, K., Ritthaler, T., Krämer, B.K., and Kurtz, A. Effect of endothelium-derived relaxing factor on renin secretion from isolated mouse renal juxtaglomerular cells. Acta Physiol. Scand. 140347–354 (1993).

    Article  Google Scholar 

  39. Schricker, K. and Kurtz, A. Liberators of NO exert a dual effect on renin secretion from isolated mouse renal juxtaglomerular cells.Am. J. Physiol. 265F180–F186 (1993).

    PubMed  CAS  Google Scholar 

  40. Greenberg, S.G., He, X.-R., Schnermann, J.B., and Briggs, J.P. Effect of nitric oxide on renin secretion. I. Studies in isolated juxtaglomerular granular cells.Am. J. Physiol. 268F948–F952 (1995).

    PubMed  CAS  Google Scholar 

  41. Della Bruna, R., Pinet, F., Corvol, P., and Kurtz, A. Opposite regulation of renin gene expression by cyclic AMP and calcium in isolated mouse juxtaglomerular cells.Kidney Int. 471266–1273 (1995).

    Article  PubMed  Google Scholar 

  42. He, X.-R., Greenberg, S.G., Briggs, J.P., and Schnermann, J.B. Effect of nitric oxide on renin secretion. II. Studies in the perfused juxtaglomerular apparatus.Am.J. Physiol. 268F953–F959 (1995).

    PubMed  CAS  Google Scholar 

  43. Gnarro, L.J. Endothelium-derived nitrix oxide: actions and properties.FASEB J. 331–36 (1989).

    Google Scholar 

  44. Kurtz, A., Della Bruna, R., Pfeilschifter, J., Taugner, R., and Bauer, C. Atrial natriuretic peptide inhibits renin release from isolated renal juxtaglomerular cells by a cGMP mediated process.Proc. Natl. Acad. Sci. USA 834769–4773 (1986).

    Article  PubMed  CAS  Google Scholar 

  45. Laffranchi, R., Gogvadze, V., Richter, C., and Spinas, G.A. Nitrix oxide stimulates insulin secretion by inducing calcium release from mitochondria.Biochem. Biophys. Res. Commun. 217584–591 (1995).

    Article  PubMed  CAS  Google Scholar 

  46. Schmidt, H.H.H.W., Warner, T.D., Ishii, K., Sheng, H., and Murad, F. Insulin secretion from pancreatic B cells caused by L-arginine-derived nitriogen oxide.Science 255721–723 (1992).

    Article  PubMed  CAS  Google Scholar 

  47. Schmidt, H.H.H.W., Lohmann, S.M., and Walter, U. The nitric oxide and cGMP signal transduction system: regulation and mechanismen of action.Biochem. Biophys. Acta 1178153–175 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. Gambarian, S., Lohmann, S., and Walter, S. Personal communication.

    Google Scholar 

  49. Singh, I.J., Graham, M., Wang, W.H., Young, T., Killen, P., Smart, A., Schnermann, J., Briggs, J.P. 1996. Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen oxide mRNA by dietary salt.Am. J. Physiol. 270F1027—F1037.

    PubMed  Google Scholar 

  50. Fischer, E., Schnermann, J., Briggs, J.P., Kriz, W., Ronco, P.M., and Bachmann, S. Ontogeny of NO synthase and renin in juxtaglomerular apparatus of rat kidneys.Am. J. Physiol. 268F1164–F1176 (1995).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kurtz, A., Schricker, K. (1997). NO and The Renin System. In: Goligorsky, M.S., Gross, S.S. (eds) Nitric Oxide and the Kidney. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6039-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6039-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7768-9

  • Online ISBN: 978-1-4615-6039-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics