Skip to main content

The Biological Chemistry of NO

  • Chapter
Nitric Oxide and the Kidney

Abstract

The most well-characterized biological function of nitric oxide (.NO) is the elevation of cyclic guanosine monophosphate (cGMP) levels by the activation of guanylyl cyclase [1-3]. Simplistically, this pathway involves diffusion of •NO from its site of synthesis to a target enzyme in an adjacent cell or tissue. In this respect, •NO is acting as a conventional paracrine messenger. However, the known chemistry of •NO suggests that this journey is not at all simple and that there is the potential for a plethora of side reactions to occur. The chemical reactions between •NO and other biological molecules impact not only on the efficiency of guanylyl cyclase activation but also contribute to the cytotoxic potential of activated immune cells. Moreover, if uncontrolled, •NO synthesis may be responsible for a variety of pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott, R.F. The role of the endothelium in the responses of vascular smooth muscle to drugs.Ann. Rev. Toxicol. 24175–197 (1984).

    Article  CAS  Google Scholar 

  2. Ignarro, L.J., Lippton, H., Edwards, J.C., Baricos, W.H., Hyman, A.L., Kadowitz, P.J., and Gruetter, C.A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement ofSnitrosothiols as active intermediates.J. Pharm. Exp. Ther. 218739–749 (1981).

    CAS  Google Scholar 

  3. Palmer, R.M.J., Ferrige, A.G., and Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature327, 524–526 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. Merck Index, Eleventh Edition (Ed.) S. Budavari, Merck Co. Inc., 1989.

    Google Scholar 

  5. Dinnerman, C.E. and Ewing, G.E. Infrared spectrum, structure, and heat of formation of gaseous (NO)2.J. Phys. Chem. 53626–631 (1970).

    Article  Google Scholar 

  6. Feelisch, M. The biochemical pathways of nitric oxide formation from nitrovasodilators: Appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions.J. Cardiovasc. Pharm. 17(Suppl. 3), S25–S33 (1991).

    Article  CAS  Google Scholar 

  7. Subczynski, W.K., Lomnicka, M., and Hyde, J.S. Permeability of nitric oxide through lipid bilayer membranes.Free Rad. Res. 24343–349 (1996).

    Article  CAS  Google Scholar 

  8. Denicola, A., Souza, J.M., Radi, R., and Lissi, E. Nitric oxide diffusion in membranes determined by fluorescence quenching.Arch. Biochem. Biophys. 328208–212 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. Singh, R.J., Hogg, N., Mchaourab, H.S., and Kalyanaraman, B. Physical and chemical interaction between nitric oxides and nitroxides.Biochim. Biophys. Acta 1201437–441 (1994).

    Article  PubMed  Google Scholar 

  10. Malinski, T., Taha, Z., Grunfeld, S., Patton, S., Kapturczak, M., and Tomboulian, P. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors.Biochem. Biophys. Res. Commun. 193236–244 (1993).

    Article  Google Scholar 

  11. Koppenol, W.H., Pryor, W.A., Moreno, J.J., Ischiropoulos, H., and Beckman, J.S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide.Chem. Res. Toxicol. 5834–842 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. Hogg, N., Singh, R.J., and Kalyanaraman, B. The role of glutathione in the transport and catabolism of nitric oxide.FEBS Lett. 382223–228 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Pryor, W.A., Church, D.F., Govindan, C.K., and Crank, G. Oxidation of thiols by nitric oxide and nitrogen dioxide: Synthetic utility and toxicological implication.J. Organ. Chem. 47159–161 (1982).

    Article  Google Scholar 

  14. Donald, C.E., Hughes, M.N., Thompson, J.M., and Bonner, F.T. Photolysis of the NZ-SN bond in trioxodinitrate: Reaction between triplet NO-and 02to form peroxynitrite.Inorg. Chem. 252676–2677 (1988).

    Article  Google Scholar 

  15. Fukuto, J.M., Chiang, K., Hszieh, R., Wong, P., and Chaudhuri, G. The pharmacological activity of nitroxyl: a potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor.J. Pharm. Exp. Ther. 263546–551 (1992).

    CAS  Google Scholar 

  16. Pino, R.Z. and Feelisch, M. Bioassay discrimination between nitric oxide (.NO) and nitroxyl (NO-) using L-cysteine.Biochem. Biophys. Res. Commun. 20154–62 (1994).

    Article  PubMed  CAS  Google Scholar 

  17. Arnelle, D. and Stamler, J.S. NO’, •NO, and NO-donation by S-nitrosothiols: Implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation.Arch. Biochem. Biophys. 318279–285 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. Lipton, A.S., Chol, Y-B., Pan, Z-H, Lei, S.Z., Chen, H-S.V., Sucher, N.J., Loscalzo, J., Singel, D.J. and Stamler J.S. A redox based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 364626–631 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. Bonner, F. and Stedman, G. The chemistry of nitric oxide and redox related species. In:Methods in Nitric Oxide Research.Eds. Feelisch, M. and Stamler, J.S. John Wiley and Sons Ltd., London, 1996, pp. 3–18.

    Google Scholar 

  20. Antonini, E. Science, 158, 1417–1425 (1967).

    Article  PubMed  CAS  Google Scholar 

  21. Stevens, T.B., Brudvig, G.W., Bocian, D.F., and Chan, S.I. Structure of cytochrome a2-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies.Proc. Natl. Acad. Sci. USA 763320–3324 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. Ignarro, L.J., Wood, K.S., and Wollin, M.S. Regulation of purified soluble guanylate cylase by porphyrins and metalloporphyrins: a unifying concept.Adv. Cyclic Nucleotide Protein Phosphoryl. Res. 17267–274 (1984).

    CAS  Google Scholar 

  23. Stone, J.R. and Marletta, M.A. Soluble guanylate cyclase from bovine lung: Activation with nitric oxide and carbon monoxide and spectral characterizations of the ferrous and ferric forms.Biochemistry 335636–5640 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. Traylor, T.G. and Sharma, V.S. Why NO?Biochemistry 312847–2849 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. Kanner, J., Harel, S., and Granit, R. Nitric oxide as an antioxidant.Arch. Biochem. Biophys. 289130–136 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. Kanner, J., Harel, S., and Granit, R. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin.Lipids 2746–49 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. Vanin A.F., Mordvintcev, P.I., Hauschildt, S., and Mulsch, A. The relationship between L-arginine-dependent nitric oxide synthesis, nitrite release and dinitrosyliron complex formation by activated macrophages.Biochim. Biophys. Acta 117737–42 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. Verdernikov, Y.P., Mordvintcev, P.I., Malenkova, I.V., and Vanin A.F. Similarity between the vasorelaxing activity of dinitrosyl iron cysteine complexes and endothelium-derived relaxing factor.Eur. J. Pharmacol. 211313–317 (1992).

    Article  Google Scholar 

  29. Mulsch, A., Mordvintcev, P.I., Vanin A.F., and Busse R. The potent vasodilating and guanylyl cyclase activating dinitrosyl iron(II) complex is stored in a protein bound orm in vascular tissue and is released by thiols.FEBS Lett. 294252–256 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. Wink, D.A., Darbyshire, J.F., Nims R.W., Saavedra J.E., and Ford P.C. Reaction of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of the kinetics for the oxidation and nitrosation by intermediates generated in the •NO/02reaction.Chem. Res. Toxicol. 623–27 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. Kharitonov, V.G., Sundquist A.R., and Sharma, V.J. Kinetics of nitric oxide autoxidation in aqueous solution.J. Biol. Chem. 2695881–5883 (1994).

    PubMed  CAS  Google Scholar 

  32. Hogg, H., Singh, R.J., Joseph, J., Neese, F., and Kalyanaraman B. Reaction of nitric oxide with nitronyl nitroxides and oxygen: Prediction of nitrite and nitrate formation by kinetic simulation.Free Rad. Res. 2247–56 (1995).

    Article  CAS  Google Scholar 

  33. Bonner, F.T. and Stedman, G. The chemistry of nitric oxide and redox-related species. In:Methods in Nitric Oxide Research.Eds. Feelisch, M. and Stamler, J.S. John Wiley and Sons, Ltd., London, 1996.

    Google Scholar 

  34. Lancaster, J.R. Simulation of the diffusion and reaction of endogenously produced nitric oxide.Proc. Natl. Acad. Sci. USA 918137–8141 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. Lewis, R.S., Tamir, S., Tannenbaum, S.R., and Deen W.M. Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro.J. Biol. Chem. 27029350–29355 (1995).

    Article  PubMed  CAS  Google Scholar 

  36. Czapski, G. and Goldstein, S. The role of the reactions of •NO with superoxide and oxygen in biological systems: A kinetic approach.Free Rad. Biol. Med. 19785–794 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. Wink, D.A., Nims, R.W., Darbyshire, J.F., Christodoulou, D., Hanbauer, I., Cox, G.W., Laval, F., Laval, J., Cook, J.A., Krishna, M.C., LeGraff, W.G., and Mitchell, J.B. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2reactions.Chem. Res. Toxicol. 7519–525 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. Miwa, M., Stuehr, D.J., Marletta, M.A., Wishnok, J.S., and Tannenbaum, S.R. Nitrosation of amines by stimulated macrophages.Carcinogenesis 8955–958 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. Blough, N.V. and Zafiriou, O.C. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline solution.Inorg. Chem. 243502–3504 (1985).

    Article  CAS  Google Scholar 

  40. Edwards, J.O. and Plimb, R.C. The chemistry of peroxonitrites.Prog. Inorg. Chem. 41599–635 (1994).

    Article  CAS  Google Scholar 

  41. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci.(USA)871620–1624 (1990).

    Article  CAS  Google Scholar 

  42. Pryor, W.A. and Squadrito, G.L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide.Am. J. Physiol. 268L699–L722 (1995).

    PubMed  CAS  Google Scholar 

  43. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. Peroxynitrite oxidation of sulthydryls.J. Biol. Chem. 2664244–4250 (1991).

    PubMed  CAS  Google Scholar 

  44. Beckman, J.S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J., Harrison, J. Martin, J.C., and Tsai, M. Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite.Arch. Biochem. Biophys. 298438–445 (1992).

    Article  PubMed  CAS  Google Scholar 

  45. Beckman, J.S., Ye, Y.Z., Anderson, P.G., Chen, J., Accavitti, M.A., Tarpey, M.M., and White C.E. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry.Biol. Chem. Hoppe-Seyler 37581–88 (1994).

    Article  Google Scholar 

  46. Pryor, W.A., Jin, X., and Squadrito, G.L. One-and two-electron oxidations of methionine by peroxynitrite.Proc. Natl. Acad. Sci. U.S.A. 9111173–11177 (1994).

    Article  PubMed  CAS  Google Scholar 

  47. Hogg, H., Joseph, J., and Kalyanaraman, B. The oxidation of a-tocopherol and trolox by peroxynitrite.Arch. Biochem. Biophys. 314153–158 (1994).

    Article  PubMed  CAS  Google Scholar 

  48. Bartlett, D., Church, D.F., Bounds, P.L., and Koppenol, W.H. The kinetics of the oxidation of L-ascorbate by peroxynitrite.Free Rad. Biol. Med. 1885–92 (1995).

    Article  PubMed  CAS  Google Scholar 

  49. Augusto, O., Gatti, R.M., and Radi, R. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinsydnonimine N-ethylcarbamide autooxidation: Direct evidence for metal-independent formation of free radical intermediates.Arch. Biochem. Biophys. 310118–125 (1994).

    Article  PubMed  CAS  Google Scholar 

  50. Karoui, H., Hogg, N., Fréjaville, C., Tordo, P., and Kalyanaraman, B. Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite.J. Biol. Chem. 2716000–6009 (1996).

    Article  PubMed  CAS  Google Scholar 

  51. Koppenol, W.H., Pryor, W.A., Moreno, J.J., Ischiropoulos, H., and Beckman, J.S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide.Chem. Res. Toxicol.5834–842 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. Hogg, N., Darley-Usmar, V.M., Wilson, M.T., and Moncada, S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide.Biochem. J. 281419–424 (1992).

    PubMed  CAS  Google Scholar 

  53. Darley-Usmar, V.M., Hogg, N., O’Leary, V.J., Wilson, M.T., and Moncada, S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low-density lipoprotein.Free Rad. Res. Commun. 179–20 (1992).

    Article  CAS  Google Scholar 

  54. Hogg, N., Darley-Usmar, V.M., Wilson, M.T., and Moncada, S. The oxidation of a-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide.FEBS Lett. 326199–203 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. Feelisch, M., Ostrowski, J., and Noack, E. On the mechanism of NO release from sydnonimines.J. Cardiovasc. Pharm. 14(Suppl. 11), S13–S22 (1989).

    CAS  Google Scholar 

  56. Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman B. Nitric oxide regulation of superoxide and peroxynitritedependent lipid peroxidation.J. Biol. Chem. 4226066–26075 (1994).

    Google Scholar 

  57. Wink, D.A., Hanbauer, I., Krishna, M.C., DeGraff, W., Gamson, J., and Mitchell, J.B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species.Proc. Natl. Acad. Sci. USA 909813–9817 (1993).

    Article  PubMed  CAS  Google Scholar 

  58. Gergel, D., Misik, V., Ondrias, K., and Cederbaum, A.I. Increased cytotoxicity of 3-morpholinnsydnonimine to HepG2 cells in the presence of superoxide dismutase.J. Biol. Chem. 27020922–20929 (1995).

    Article  PubMed  CAS  Google Scholar 

  59. Hecker, M., Priess, C., Schinikerth, V.B., and Busse R. Antioxidants differentially affect nuclear factor kappa-B-mediated nitric oxide synthase expression in vascular smooth muscle cells.FEBS Lett 385124 (1996).

    Article  CAS  Google Scholar 

  60. Wu, M., Pritchard Jr., K.A., Kaminski, P.M., Fayngersh, R.P., Hintze, T.H., and Wolin, M.S. Involvement of nitric oxide and nitosothiols in relaxation of pulmonary arteries to peroxynitrite.Am. J. Physiol. 266H2108¨CH2113 (1984).

    Google Scholar 

  61. Moro, M.A., Darley-Usmar, V.M., Lizasoain, I., Su, Y., Knowles, R.G., Radomski, M.W., and Moncada, S. The formation of nitric oxide donors from peroxynitrite.Br. J. Pharmacol. 1161999–2004 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. Ravichandran, R.V., Johns, R.A. and Rengasamy, A. Direct and reversible inhibition of endothelial nitric oxide synthase by nitric oxide.Am. J. Physiol. 268H2216–H2223 (1995).

    PubMed  CAS  Google Scholar 

  63. Cleeter, M.W.J., Cooper, J.M., Darley-Usmar, V.M., Moncada, S. and Schapira, A.H.V. Reversible inhibition of cytochromecoxidase, the terminal enzyme of the mitochondrial electron transport chain, by nitric oxide.FEBS Lett. 34550–54 (1994).

    Article  PubMed  CAS  Google Scholar 

  64. Borutaite, V. and Brown, G.C. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide.Biochem. J. 315295–299 (1996).

    PubMed  CAS  Google Scholar 

  65. Hermann, L. Ueber die Wirkungen des Stickoxydulgases auf das Blut.Arch. Anat. Physiol. Lpz.469–481 (1865).

    Google Scholar 

  66. Kelm, M. and Schrader, J. Control of coronary vascular tone by nitric oxide.Circ. Res. 661561–1575 (1990).

    Article  PubMed  CAS  Google Scholar 

  67. Feelisch, M. and Noack, E.A. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase.Eur. J. Pharmacol. 13919–30 (1987).

    Article  PubMed  CAS  Google Scholar 

  68. Gibson, Q.H. and Roughton, F.J.W. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin.J. Physiol. 136507–526 (1957).

    PubMed  CAS  Google Scholar 

  69. Westenberger, U., Thanner, S., Ruf, H.H., Gersonde, K., Sutter, G., and Trenz, O. Formation of free radicals and nitric oxide derivative of hemoglobin in rats during shock syndrome.Free Rad. Res. Commun. 11167–178 (1990).

    Article  CAS  Google Scholar 

  70. Konorev, E.A., Joseph, J., and Kalyanaraman, B. S-Nitrosoglutathione induces formation of nitrosylmyoglobin in isolated hearts during cardioplegic ischemiaan electron spin resonance study.FEBS Lett. 378111–114 (1996).

    Article  PubMed  CAS  Google Scholar 

  71. Addison, A.W. and Stephanos, J.J. Nitrosyliron (III) hemoglobin: Autoreduction and spectroscopy.Biochemistry 254104–4113 (1986).

    Article  PubMed  CAS  Google Scholar 

  72. Griffith, O.W. and Meister A., Glutathione: Interorgan translocation, turnover and metabolism.Proc. Natl. Acad. Sci. USA76, 5606–5610 (1979).

    Article  PubMed  CAS  Google Scholar 

  73. Stamler, J.S., Singel, D.J., and Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms.Science258, 1898–1902 (1992).

    Article  PubMed  CAS  Google Scholar 

  74. Hogg, N., Singh, R.J., and Kalyanaraman, B. The role of glutathione in the transport and catabolism of nitric oxide.FEBS Lett382, 223–228 (1996).

    Article  PubMed  CAS  Google Scholar 

  75. DeMaster, E.G., Quast, B.J., Redfern, B., and Nagasawa, H.T. Reaction of nitric oxide with free sullhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide.Biochemistry34, 11494–11499 (1995).

    Article  PubMed  CAS  Google Scholar 

  76. Davidson, C.A., Kaminski, P.M., Wu, M., and Wolin, M.S. Nitrogen dioxide causes pulmonary arterial relaxation via thiol nitrosation and •NO formation.Am. J. Physiol. 270H1038–H1043 (1996).

    PubMed  CAS  Google Scholar 

  77. Myers, P.R., Minor Jr., R.L., Guerra Jr., R., Bates, J.N., and Harrison, D.G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide.Nature 345161–163 (1990).

    Article  PubMed  CAS  Google Scholar 

  78. Feelisch, M., to Poel, M., Zamora, R., Deussen, A., and Moncada, S. Understanding the controversy over the identity of EDRF.Nature 36862–65 (1994).

    Article  PubMed  CAS  Google Scholar 

  79. Stamler, J.S., Jarkari, O., Osborne, J., Simon, D.I., Keaney, J., Vita, J., Singel, D., Valen, C.R., and Loscalzo, J. Nitric oxide circulates in mammalian plasma primarily as an S-nitoso adduct of serum albumin.Proc. Natl. Acad. Sci. USA 897674–7677 (1992).

    Article  PubMed  CAS  Google Scholar 

  80. Jia, L., Bonaventura, C., Bonaventura, J., and Stamler, J.S. S-Nitrosohaemoglobin: A dynamic activity of blood involved in vascular control.Nature 380221–226 (1996).

    Article  PubMed  CAS  Google Scholar 

  81. Stamler, J.S., Simon, D.I., Osborne, J.A., Mullins, M.E., Jaraki, O., Michel, T., Singel, D.J., and Loscalzo, J. S-Nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds.Proc. Natl. Acad. Sci. USA. 89222–228 (1992).

    Article  Google Scholar 

  82. Mayer, D., Kramer, H., Ozer, N., Coles, B., and Ketterer, B. Kinetics and equilibria of S-nitrosothiol-thiol exchange between glutathione, cysteine, penicillamine and serum albumin.FEBS Lett. 345177–180 (1994).

    Article  Google Scholar 

  83. Barnett, D.J., Rios, A., and Williams, D.L.H. NO-group transfer (transnitrosation) between S-nitrosothiols and thiols. Part 2.J. Chem. Soc. Perkin Trans. 21279–1282 (1995).

    Google Scholar 

  84. Singh, R.J., Hogg, N., Joseph, J., and Kalyanaraman, B. Mechanism of nitric oxide release from S-nitrosothiols.J. Biol. Chem. 27118596–18603 (1996).

    Article  PubMed  CAS  Google Scholar 

  85. Park, J-W., Billman, G.E., and Means, G.E. Transnitrosation as a predominant mechanism in the hypotensive effect of S-nitrosoglutathione.Biochem. Mol. Biol. Int. 30885–891 (1993).

    PubMed  CAS  Google Scholar 

  86. De Groote, M.A., Granger, D., Xu, Y., Campbell, G., and Prince, R. Genetic and redox determinants of nitric oxide cytotoxicity in aSalmonella typhimuriummodel.Proc. Natl. Acad. Sci. USA 926399–6403 (1995).

    Article  PubMed  Google Scholar 

  87. Askew, S.C., Barnett, D.J., McAninly, J., and Williams, D.L.H. Catalysis by Cu2+of nitric oxide release from S-nitrosothiols (RSNO).J. Chem. Soc. Perkin Trans.2741–745 (1995).

    Google Scholar 

  88. McAninly, J., Williams, D.L.H., Askew, S.C., Butler, A.R., and Russell, C. Metal ion catalysis in nitrosothiol (RSNO) decomposition.J. Chem. Soc. Chem. Commun.1758–1759 (1993).

    Google Scholar 

  89. Singh, R.J., Hogg, N., Joseph, J., and Kalyanaraman, B. Photosensitized decomposition of S-nitrosothiols and 2-methyl-2-nitrosopropane. Possible use for site-directed nitric oxide production.FEBS Lett. 36047–61 (1995).

    Article  PubMed  CAS  Google Scholar 

  90. Hogg, N., Kalyanaraman, B., Joseph, J., Struck, A., and Parthasarathy, S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis.FEBS Lett 334170–174 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. Hayashi, K., Noguchi, N., and Niki, E. Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidylcholine liposomal membranes.FEBS Lett. 37037–40 (1995).

    Article  PubMed  CAS  Google Scholar 

  92. Padamaja, S. and Huie R.E. The reaction of nitric oxide with organic peroxyl radicals.Biochem. Biophys. Res. Commun. 195539–544 (1993).

    Article  Google Scholar 

  93. Rubbo, H., Parthasarathy, S., Barnes, S., Kirk, M., Kalyanaraman, B., and Freeman, B.A. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density oxidation: Termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives.Arch. Biochem. Biophys. 32415–25 (1995).

    Article  PubMed  CAS  Google Scholar 

  94. Goss, S.P.A., Hogg, N., and Kalyanaraman, B. The antioxidant effect of spermine NONOate in human low-density lipoprotein.Chem. Res. Toxicol. 8800–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  95. Boese, M., Mordvintcev, P.I., Vanin, A.F., Busse, R., and Mulsch,. A. S-Nitrosation of serum albumin by dinitrosyl-iron complex.J. Biol. Chem. 27029244–29249 (1995).

    Article  PubMed  CAS  Google Scholar 

  96. Stadler, J., Bergonia, H.A., Di Silvio, M., Sweetland, M.A., Billiar, R., Simmons, R.L., and Lancaster, J.R. Nonheme iron—nitrosyl complex formation in rat hepatocytes: Detection by electron paramagnetic resonance spectroscopy.Arch. Biochem. Biophys. 3024–11 (1993).

    Article  PubMed  CAS  Google Scholar 

  97. Bienert, H. and Kennedy, M.C. Aconitase, a two face protein: Enzyme and iron regulatory factor.FASEB J. 71442–1449 (1993).

    Google Scholar 

  98. Pantopoulos, K. and Hentze, M.W. Nitric oxide signaling to oron-regulatory protein: Direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts.Proc. Natl. Acad. Sci. USA 921267–1271 (1995).

    Article  PubMed  CAS  Google Scholar 

  99. Lepoivre, M., Fieschi, F., Coves, J., Thelander, L., and Fontecave, M. Inactivation of ribonucleotide reductase by nitric oxide.Biochem. Biophys. Res. Commun. 179442–448 (1991).

    Article  PubMed  CAS  Google Scholar 

  100. Moriguchi, M., Manning, L.R., and Manning, J.M. Nitric oxide can modify amino acid residues in proteins.Biochem. Biophys. Res. Commun. 183598–604 (1992).

    Article  PubMed  CAS  Google Scholar 

  101. Gurbunov, N.V., Osipov, A.N., Sweetland, M.A., Day, B.W., Elsayed, N.M., and Kagen V.E.Biochem. Biophys. Res. Commun. 219835–841 (1996).

    Article  Google Scholar 

  102. Janzen, E.G., Wilcox, A.L., and Manoharan, V.J. Org. Chem. 583597–3599 (1993).

    Article  CAS  Google Scholar 

  103. de Groot, H., Hegi, U. and Sies, H. (1993).FEBS Lett315, 139–142.

    Article  PubMed  Google Scholar 

  104. Hogg, N., Singh, R.J., Goss, S.P.A., and Kalyanaraman, B. The reaction between nitric oxide and a-tocopherol: A reappraisal.Biochem. Biophys. Res. Commun. 224696–702 (1996).

    Article  PubMed  CAS  Google Scholar 

  105. Farias-Eisner, R., Chaudhuri, G., Aeberhard, E., and Fukuto, J.M. The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility.J. Biol. Chem. 2716144–6151 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hogg, N., Griffith, O.W. (1997). The Biological Chemistry of NO. In: Goligorsky, M.S., Gross, S.S. (eds) Nitric Oxide and the Kidney. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6039-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6039-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7768-9

  • Online ISBN: 978-1-4615-6039-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics