Skip to main content

Abstract

Thin film refers to a coating layer of thickness typically in the range of from a few (2–3) atomic layers to a few (1–5) microns. However, film thicknesses up to 20–50 μm are frequently regarded as thin-film in electronic packaging. Thin-film packaging is the technology for conductors and dielectrics deposition and patterning in package fabrication, which resembles the technology used for integrated-circuit (IC) chip fabrication. Thin-film packaging is distinguished from thick-film packaging, mainly ceramic and printed wiring board (PWB) packaging, in two aspects: (a) the typical dimensions of conductors and dielectrics are about 2–25 μm versus 100 μm and above in thick-film packaging; (b) the typical methods of thin-film deposition include sputtering, evaporation, chemical vapor deposition (CVD), more recently electro/electroless plating and polymeric solution coating, and other similar methods, which are all typical sequential processes, whereas in thick-film packaging parallel processes are more common, such as lamination and cofiring of ceramic greensheets. Nevertheless, the current trends in electronic packaging are the enhancement of thick-film technology to fabricate finer feature sizes which are traditionally considered only achievable by thin-film technology and the adoption of some of the parallel thick-film processes for thin-film fabrication. Due to these developments, the traditional division between thin- and thick-film packaging technologies is diminishing and the definition of thin-film packaging is becoming less obvious. Still, the mainstream of thin-film packaging can be well identified which allows a fairly extensive compilation on this technology. In this chapter, the need for thin-film packaging, electrical performance considerations, and typical structures in thin-film packages are first elucidated. Subsequently, the materials, processes, and cost analyses of thin-film packaging are discussed in detail. Repair is especially important in thin-film packaging and is dealt with in the context of cost and yield. Reliability of packages has been discussed in Chapter 5, “Package Reliability,” and reliability issues which are unique to thin-film packages are identified here. Some major commercial applications of thin-film packaging are reviewed, followed by a summary of the emerging technologies. Integration of various passive components is becoming imperative for thin-film packages to enhance electrical performance and packaging efficiency, which is also included in this chapter along with some applications and future predictions. Finally, the current development and future directions of thin-film packaging technology are summarized and projected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. Jones, W. C. Holton, and R. Stratton. “Semiconductors: The Key to Computational Plenty,” Proc. IEEE, 72: pp. 1380–1409, 1982

    Article  Google Scholar 

  2. M. Terasawa, S. Minami, and J. Rubin. “A Comparison of Thin Film, Thick Film, and Co-Fired High Density Ceramic Multilayer with the Combined Technology: T & T HDCM (Thin Film and Thick Film High Density Ceramic Module,” Int. J. Hybrid Microelectron, 6(1): pp. 607–615, 1983

    Google Scholar 

  3. N. Naclerio. “ARPA Strategy and Programs in Electronic Packaging,” ARPA WWW.homepage (http://ETO.sysplan.com/ETO/EI-packaging/present), 1996

  4. B. S. Landman and R. L. Russo. “On a Pin vs. Block Relationship for Partitions of Logic Graphs,” IEEE Trans. Computers, EC-20: pp. 1469–1479, 1971

    Article  Google Scholar 

  5. T. Chiba. “Impact of the LSI on High-Speed Computer Packaging,” IEEE Trans. Computers, EC-27: pp. 319–325, 1978

    Article  Google Scholar 

  6. C. T. Goddard. “The Role of Hybrids in LSI Systems,” IEEE Trans. Components Hybrids Manuf. Technol., CHMT-2: pp. 367–371, 1979

    Article  Google Scholar 

  7. T. S. Steele. “Terminal and Cooling Requirements for VLSI Packages,” IEEE Trans. Components Hybrids Manuf. Technol, CHMT-4: pp. 187–191, 1981

    Article  Google Scholar 

  8. D. Balderes and M. L. White. “Package Effects on CPU Performance of Large Commercial Processors,” Proc. 35th ECC, pp. 351–355, 1985

    Google Scholar 

  9. R. T. Evans. “Interconnection and Packaging of IBM’s Large Processors,” Proc.34th ECC, pp. 374–378, 1984

    Google Scholar 

  10. A.J. Blodgett. “Microelectronic Packaging,” Scientific American, 249(1): pp. 86–96, 1983

    Article  Google Scholar 

  11. T. Watari and H. Murano. “Packaging Technology for the NEC SX Supercomputer?” Proc. 35th ECC, pp. 192–198, 1985

    Google Scholar 

  12. E. E. Davidson. “The Electrical Design Methodology for the Package Used in the IBM 3090 Computer,” IEEE Proc, Wescon/85 Electronic Show and Convention, p. 1, 1985

    Google Scholar 

  13. C. W. Ho, D. A. Chance, C. H. Bajorek, and R. E. Acosta. “The Thin-Film Module as a High Performance Semiconductor Packaging,” IBM J. Res. Devei, 26(3): pp. 286–296, 1982

    Article  Google Scholar 

  14. C. W. Ho. High-Performance Computer Packaging and the Thin Film Multichip, VLSI Electronics Microstructure Sciences, pp. 103–143, Academic Press, New York, 1982

    Google Scholar 

  15. C. A. Neugebauer. “Comparison of VLSI Packaging Approaches to Wafer Scale Integration,” Proc. IEEE Int. Conf. Computer Design, pp. 115–120, 1984

    Google Scholar 

  16. Y. Tsukuda, S. Tsuchida, and Y. Mashimoto. “Surface Laminar Circuitry Packaging,” Proc. 42nd ECTC, pp. 22–27, 1992

    Google Scholar 

  17. S. Ray, D. Berger, G. Czomyi, A. Kumer, and R. Tummala. “Dual-level Metal (DLM) Method for Fabricating Thin Film Wiring Structures,” Proc. 43rd ECTC, pp. 538–543, 1993

    Google Scholar 

  18. S. Poon, J. T. Pan, T. C. Wang, and B. Nelson. “High Density Multilevel Copper/ Polyimide Interconnects,” NEPCON West, pp. 426–427, 1989

    Google Scholar 

  19. N. Iwasaki and S. Yamaguchi. “A Pillar-Shaped Via Structure in a Cu-Polyimide Multilayer Substrate,” IEEE Trans. Components Hybrids Manuf. Technol, 13(2): pp. 440–443, 1990

    Article  Google Scholar 

  20. J. F. McDonald, J. A. Steakl, C. A. Neugebanner, R. O. Carlson, and A. S. Gergundahl. “Multilevel Interconnections for Wafer Scale Integration,” J. Vacuum Sci. Technol, 4(6): pp. 3127–3136, 1986

    Article  Google Scholar 

  21. H. J. Levinstein, C. J. Bartlett, and W. J. Bertram. “Multichip Packaging Technology for VLSI-Based System,” IEEE Computer Soc. Proc., March 1987

    Google Scholar 

  22. P. Garrou. “Polymer Dielectrics for Multichip Module Packaging,” Proc. IEEE, 80(12): pp. 1942–1954, 1992

    Article  Google Scholar 

  23. W. Lautenberger, B. Auman, J. Butera, D. Goff, C. Lazaridis, H. Seiler, and J. Labadie. “Polyimides for Large Area Multichip Modules,” Proc. ICEMCM’ 95,pp. 501–506, 1995

    Google Scholar 

  24. E. Perfecto, K. Prasad, P. Wilkens, G. White, R. Tummala, C. Prasad, and T. Redmond. “Multi-level Thin Film Packaging Technology at IBM,” Proc. ICEMM’ 93, pp. 474–482, 1993

    Google Scholar 

  25. R. Tummala. “Multichip Packaging in IBM—Past, Present and Future,” Proc.ICEMM’ 93, pp. 1–11, 1993

    Google Scholar 

  26. G. Adema, M. Berry, and I. Turlik. “Dielectric Materials for Use in Thin Film Multichip Modules,” Electronic Packaging and Production, 32(2): pp. 72–76, 1992

    Google Scholar 

  27. R. Tummala, H. Potts, and S. Ahmed. “Packaging Technology for IBM’s Latest Mainframe Computers (S/390/ES9000),” Proc. 4Ist ECTC, pp. 682–684, 1991

    Google Scholar 

  28. T. Tessier and P. Garrou. “Overview of MCM Technologies: MCM-D,” Proc. ISHM’ 92, pp. 235–247, 1992

    Google Scholar 

  29. K. Miyazaki, A. Takahashi, O. Miura, R. Watanbe, Y. Satsu, T. Miwa, and J. Katagiri. “Fabrication of Thin Film Multilayer Substrate Using Copper Clad Polyimide Sheets,” Proc. 43rd ECTC, pp. 306–310, 1993

    Google Scholar 

  30. K. Prasad and E. Perfecto. “Multilevel Thin Film Packaging: Applications and Processes for High Performance Systems,” IEEE Trans. Components Packaging Manuf. Technol.—Part B: Advanced Packaging, 17(1): pp. 38–49, 1994

    Article  Google Scholar 

  31. S. Patel, T. Redmond, C. Tessler, D. Tudryn, and D. Pulaski. “Laser Via Ablation Technology for MCMs Thin Film Packaging—Past, Present, and Future at IBM Microelectronics,” Proc. ISHM’ 94, pp. 31–41, 1994

    Google Scholar 

  32. P. B. Chinoy. “Processing and Electrical Characterization of Multilayer Metallization for Microwave Applications,” Proc. ICEMCM’ 95, pp. 203–208, 1995

    Google Scholar 

  33. R.J. Jensen. “Polyimides as Interlayer,” in Polymers for High TechnologyElectronics and Photonics, ed. by M. J. Bowden and R. S. Turner, ACS Symposium Series 346, American Chemical Society, Washington DC, 1987

    Google Scholar 

  34. S. Sasaki, T. Kon, and T. Ohsaki. “New Multi-Chip Module Using a Copper Polyimide Multi-Layer Substrate,” Proc. 39th ECC, pp. 629–635, 1989

    Google Scholar 

  35. T. Shimoto, K. Matsui, and K. Utsumi. “Cu/Photosensitive-BCB Thin-Film Multilayer Technology for High-Performance Multichip Module,” Proc. MCM’ 94, pp. 115–120, 1994

    Google Scholar 

  36. D. Darrow and S. Vilmer-Bagen. “Low-Cost Patterned Metallization Technique for High Density Multilayer Interconnect Applications,” Proc. 43rd ECTC, pp. 544–549, 1993

    Google Scholar 

  37. C. W. Ho and U. A. Deshpande. “A Low Cost Multichip Module-D Technology,” Proc. ICEMM’ 93, pp. 483–488, 1993

    Google Scholar 

  38. A. Strandjord, Y. Ida, P. Garrou, B. Rogers, S. Cummings, and S. Kisting. “MCM-D Fabrication with Photosensitive Benzocyclobutene: (Processing, solder Bumping, System Assembly, and Testing),” Proc. ISHM’ 95, pp. 402–417, 1995

    Google Scholar 

  39. T. Dudderar, Y. Degani, J. Spadafora, K. L. Tai, and R. Frye. “AT&T μSurface Mount Assembly: A New Technology for the Large Volume Fabrication of Cost Effective Flip-Chip MCMs,” Proc. MCM’ 94, pp. 266–272, 1994

    Google Scholar 

  40. W. Radlik, K. Plehnert, M. Zellner, A. Achen, R. Heistand II, D. Castillo, and R. Urscheler. “MCM-D Technology for a Communication Application,” Proc. MCM’ 94, pp. 402–409, 1994

    Google Scholar 

  41. V. Rao, D. Hutchins, J. Reagan, D. Scheid, R. Streif, T. Syrstad, C. Eggerding, and T. Redmond. “Manufacturing of Advanced Cu-PI Multi Chip Modules,” Proc. 43rd ECTC, pp. 920–934, 1993

    Google Scholar 

  42. M. Chopra and R. Sechler. “Comparison of MCMs for a High Performance Workstation,” Proc. ICEMM V3, pp. 457–467, 1993

    Google Scholar 

  43. G. B. Leung and S. A. Sands. “A Thin Films on MLC Application,” Proc. 41st ECTC, pp. 10–13, 1991

    Google Scholar 

  44. S. Numata, S. Oohara, K. Fujisaki, J. Imaizumi, and N. Kinjo. “Low Thermal Expansion Polyimide,” J. Appl. Polymer Sci., 31(101): pp. 81–86, 1986

    Google Scholar 

  45. S. Numata, T. Miwa, Y. Misawa, D. Makino, J. Imaizumi, and N. Kinjo. “Low Thermal Expansion Polyimides and Their Applications,” Mater. Res. Soc. Proc, p. 1, 1987

    Google Scholar 

  46. See, for example, Japanese Patent 61-111598, 1987

    Google Scholar 

  47. R. Tummala, “Glass Composition for Glass-Metal Package,” U. S. Patents 3,640,738, 1971

    Google Scholar 

  48. T. Matsuzaki, K. Sato, T. Suzuki, and M. Terashima. “High Density Multilayer Wiring Substrate Using Copper Thick Film and Thin Film,” IEEE Trans. Components Hybrids Manuf. Technol, CHMT-8: pp. 484–491, 1985

    Google Scholar 

  49. R. H. Heistand II, D. C. Frye, D. Burdeaux, J. Carr, and P. Garrou. “Economic Evaluation of Deposited Dielectric MCM Manufacturing Costs,” Proc. 2nd IEPS/ISHM MCM Conf., pp. 441–450, 1993

    Google Scholar 

  50. P. Rickerl, J. Stephanie, and P. Jr. Slota. “Evaluation of Photosensitive Polyimides for Packaging Applications?”, Proc. 37th ECC, pp. 220–225, 1987

    Google Scholar 

  51. J. H. Lai, Polymers for Electronic Applications, CRC Press, Boca Raton, FL, 1989

    Google Scholar 

  52. M. Berry, T. Tessier, I. Turlik, G. Adema, D. Burdeaux, J. Carr, and P. Garrou “Benzocyclobutene as a Dielectric for Multichip Module Fabrication,” Proc. 40th ECTC, pp. 746–750, 1990

    Google Scholar 

  53. D. H. Klockow. “Expanding Hybrid Circuits Through Thick and Thin,” AT & T Bell Laboratories Record, pp. 25–29, March, 1984

    Google Scholar 

  54. A. Strandjord, R. Heistand, J. Bremmer, P. Garrou, and T. Tessier. “A Photosensitive BCB on Laminate Technology (MCM-LD),” Proc. 44th ECTC, pp. 374–385, 1994

    Google Scholar 

  55. H. F. Bok. “Process Enhancements in Meniscus Coating for Flat-Panel Displays?” SID 94 Digest, pp. 940–942, 1994

    Google Scholar 

  56. L. J. Laursen and P. Garrou. “Consortium for Intelligent Large Area Processing (CILAP)—Program Review,” Proc. ICEMCM’ 95, pp. 253–258, 1995

    Google Scholar 

  57. R. Kambe, M. Kuroda, R. Imai, and Y. Kimura. “Copper Polyimide Multilayer Substrate for High Speed Signal Transmission,” Proc. 41st ECTC, pp. 14–16, 1991

    Google Scholar 

  58. E. Fogarassy and S. Lazare. Laser Ablation of Electronic Materials: Basic Mechanisms and Applications, pp. 39–53, Elsevier Science Publishers, Amsterdam, 1992

    Google Scholar 

  59. E. Fogarassy and S. Lazare. Laser Ablation of Electronic Materials: Basic Mechanisms and Applications, pp. 239–253, Elsevier Science Publishers, Amsterdam, 1992

    Google Scholar 

  60. T. G. Tessier, W. F. Hoffman, and J. W. Stafford. “Via Processing Options for MCM-D Fabrication: Excimer Laser Ablation vs Reactive In Etching,” Proc. 41st ECTC, pp. 827–834, 1991

    Google Scholar 

  61. T. F. Redmond, J. R. Lankard, J. G. Balz, G. R. Proto, and T. A. Wassick. “The Application of Laser Process Technology to Thin Film Packaging,” Proc. 41st ECTC, pp. 1066–1071, 1991

    Google Scholar 

  62. R. Srinivasan. “Interactions of Polymer Surfaces with Ultraviolet Laser Pulses,” Photochemistry and Polymeric Systems, ed. by J. M. Kelly, C. B. McArdle, and M. J. de F. Maunder, pp. 46–53, Royal Society of Chemistry, London, 1992

    Google Scholar 

  63. S. Lazare, H. Hiraoka, A Cros, and R. Gustiniani. “Ultra-Violet Laser Photoablation of Thermostable Polymers: Polyimides, Polyphenylquinoxaline and Teflon AF,” in Polyimides and Other High-Temperature Polymers, ed. by M. J.M. Abadie and B. Sillion, Elsevier Science Publishers, Amsterdam, pp. 395–406, 1991

    Google Scholar 

  64. T. G. Tessier and G. Chandler. “Compatibility of Common MCM-D Dielectrics with Scanning Laser Ablation Via Processes,” Proc. 42nd ECTC, pp. 763–765, 1992

    Google Scholar 

  65. F. Bachmann. “Excimer Laser Drill for Multilayer Printed Circuit Boards: From Advanced Development to Factory Floor,” MRS Bull., pp. 49–54, 1989

    Google Scholar 

  66. T. Shimoto, K. Matsui, M. Kimura, and K. Utsumi. “High Density Multilayer Substrate Using BCB Dielectric,” Proc. IMC, pp. 325–326, 1992

    Google Scholar 

  67. T. G. Tessier and E. G. Myszka. “Approaches to Cost Reducing MCM-D Substrate Fabrication,” Proc. 43rd ECTC, pp. 570–578, 1993

    Google Scholar 

  68. G. E. Wolbold, C. L. Tessier, and D. J. Tudryn. “Characterization, Set-Up and Control of a Manufacturing Laser Ablation Tool and Process,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, SPIE Proc. No. 1835, pp. 62–69, SPIE, 1992

    Google Scholar 

  69. J. H. Brannon and J. R. Lankard. “Patterning of Polyimide Films with Ultraviolet Light,” US Patent No. 4,508,749, 1985

    Google Scholar 

  70. T. G. Tessier, G. M. Adema, S. M. Bobbio, and I. Turlik. “Low Temperature Etch Masks for High Rate Magnetron RIE of Polyimide Dielectrics in Thin Film Packaging Applications,” Proc. 3rd Int. SAMPE Electronics Conf, pp. 85–87, 1989

    Google Scholar 

  71. M.J. Rutter. “Via Formation in Thick Polyimide Layers for Silicon Hybrid Multichip Modules,” in Microelectronic Packaging Technology: Materials and Processes, Proc. 2nd ASM Inter. Electron. Mater. Processing Congress, ed. by W. T. Shieh, ASM Press, Metals Park, OH, 1989

    Google Scholar 

  72. J. Paraszczak, J. Cataldo, E. Galligan, W. Graham, R. McGouey, S. Nunes, R. Serino, D. Shih, E. Babich, A. Deutsch, and G. Kopcsay. “Fabrication and Performance Studies of Multilayer Polymer/Metal Interconnect Structures for Packaging Applications,” Proc. 41st ECTC, pp. 362–369, 1991

    Google Scholar 

  73. D. Y. Shih, H. Yeh, C. Narayan, J. Lewis, W. Graham, S. Nunes, J. Paraszczak, R. McGouey, E. Galligan, J. Cataldo, R. Serino, E. Perfecto, C.-A. Chang, A. Deutsch, L. Rothman, and J. Ritsko, “Factors Affecting the Interconnection Resistance & Yield in the Fabrication of Multilayer Polyimide/Metal Thin Film Structure,” Proc. 42nd ECTC, pp. 1002–1014, 1992

    Google Scholar 

  74. R. R. Tummala and E. J. Rymaszewski. Microelectronics Packaging Handbook, von Nostrand Reinhold, New York, 1989

    Google Scholar 

  75. H. J. Neuhaus. “An MCM-D Substrate Fabrication Model: Comparing Dry Etch, Wet Etch and Photosensitive Dielectrics,” Proc. 2nd IEPS/ISHM MCM Conf., pp. 46–50, 1993

    Google Scholar 

  76. E. D. Perfecto, C. Osbom, and D. G. Berger. “Factors that Influence Photosensitive Polyimide Lithography Performance,” Proc. 2nd IEPS/ISHM MCM Conf., pp. 40–45, 1993

    Google Scholar 

  77. K. Moriya, T. Ohsaki, and K. Katsura. “High Density Multilayer Interconnection with Photosensitive Polyimide Dielectric and Electroplating,” Proc. 34th ECC, pp. 82–83, 1984

    Google Scholar 

  78. H. Takasago, M. Takada, K. Adachi, K. Yamada, Y. Onishi, and Y. Morihiro. “Fine-Line Multilayer Hybrids with Wet Processed Conductors and Thick Film Resistors,” Proc. 34th ECC, pp. 324–326, 1984

    Google Scholar 

  79. O. Ahimada, K. Ito, T. Miyagi, S. Kimijima, and T. Sudo. “Electrical Properties of a Multilayer Thin Film Substrate for Multichip Packages,” Proc. Japan IEMT Symp., pp. 123–124, 1989

    Google Scholar 

  80. E. W. Rutter, E. S. Moyer, R. F. Harris, D. C. Frye, V. L. St. Jeor, and F. L. Oaks. “A Photodefinable Benzocyclobutene Resin for Thin Film Microelectronics Applications,” 1st Int. MCM Conf., pp. 394–396, 1992

    Google Scholar 

  81. P. Mukerji, T. G. Tessier, G. Demet, and S. Dasgupta. “MCM Via Generation by Wet Processing,” ISHM Polymer and Ceramic Low K Dielectrics: Advances in Processing and Characterization Workshop, 1992

    Google Scholar 

  82. H. J. Neuhaus. “A High Resolution, Anisotropic Wet Patterning Processing Technology for MCM Production,” 1st Int. MCM Conf., pp. 256–263, 1992

    Google Scholar 

  83. T. Rucker, V. Murali, and R. Shukla. “A Wet Etch Polyimide Process for Multichip Modules,” 1st Int. MCM Conf., pp. 251–254, 1992

    Google Scholar 

  84. C. E. Diener and J. R. Susko. “Etching of Partially Cured Polyimides,” Proc. 1st Technical Conf. Polyimides, pp. 353–364, 1992

    Google Scholar 

  85. T. Inoue, H. Matsuyama, E. Matsuzaki, Y. Narizuka, M. Tanaka, and T. Takenaka. “Micro Carrier for LSI Chip Used in the HITAC M-880 Processor Group,” Proc. 41st ECTC, pp. 704–706, 1991

    Google Scholar 

  86. A. Kimura, T. Tsujimura, K. Saitoh, and Y. Kohno. “Fabrication and Characteristics of Silicon Carrier Substrates for Silicon on Silicon Packaging,” 1st Int. MCM Conf, p. 23, 1992

    Google Scholar 

  87. Y. H. Kim, J. Kim, G. F. Walker, C. Feger, and S. P. Kowalczyk. “Adhesion and Interface Investigation of Polyimide on Metals,” J. Adhesion Sci. Technol., 2(2): pp. 95–98, 1988

    Article  Google Scholar 

  88. G. M. Adema, L. T. Hwang, G. A. Rinne, and I. Turlik. “Passivation Schemes for Copper/Polymer Thin Film Interconnections Used in Multichip Modules,” Proc. 42nd ECTC, pp. 776–782, 1992

    Google Scholar 

  89. G. Czomyj, K. Chen, G. Prada-Silva, A. Arnold, H. Souletis, S. Kim, M. Ree, W. Volksen, D. Dawson, and R. DiPietro. “Polyimide for Thin Film Redistribution on Glass-Ceramic/Copper Multilevel Substrates,” Proc. 42nd ECTC, pp. 682–687, 1992

    Google Scholar 

  90. S. P. Kowalczyk, Y.-H. Kim, G. F. Walker and J. Kim. “Polyimide on Copper: The Role of Solvent in the Formation of Copper Precipitates,” Appl. Phys. Lett., 52(5): pp. 375–376

    Google Scholar 

  91. R. Hiestand, R. DeVellis, P. Garrou, D. Burdeaux, T. Stokich, P. Townsend, T. Mania, and L. Bratton. “Cyclobutene 3022 (BCB) for Non-Hermetic Packaging,” Proc. ISHM’ 92 Conf, pp. 584–590, 1992

    Google Scholar 

  92. T. G. Tessier, I. Turlik, G. M. Adema, D. Sivan, E. K. Yung, and M. J. Berry. “Process Considerations in Fabricating Thin Film Multichip Modules,” Proc. 1989 Int. Electronic Packaging Symp., pp. 248–270, 1989

    Google Scholar 

  93. W. J. Bertram. “High Density, Large Scale Interconnection for Improved VLSI System Performance,” Proc. 1987 IEDM, pp. 100–103, 1987

    Google Scholar 

  94. E. D. Perfecto, K. Prasad, C. Osbom, S. Swaminathan, G. White, and C. Prasad. “Comparison of Planar and Non-Planar Thin Film Processes,” Proc. 43rd ECTC, (Supplement to the regular proceedings), 1993

    Google Scholar 

  95. J. T. Pan, S. Poon, and B. Nelson. “A Planar Approach to High Density Copper-Polyimide Interconnect Fabrication,” Proc. 8th lEPS, pp. 174–189, 1988

    Google Scholar 

  96. T. J. Buck. “Substrates for High Density Packaging,” Proc. 1990 NEPCON West, p. 650, 1990

    Google Scholar 

  97. S. K. Ray, K. Beckham, and R. Mater. “Flip Chip Interconnection Technology for Advanced Thermal Conduction Modules,” Proc. 4lst ECTC, pp. 772–778, 1991

    Google Scholar 

  98. S. K. Ray, K. Seshan, and M. Interrante. “Engineering Change (EC) Technology for Thin Film Metallurgy on Polyimide Films,” Proc. 40th ECTC, pp. 395–400, 1990

    Google Scholar 

  99. L. B. Rothman. “Properties of Thin Polyimide Films,” J. Electrochem. Soc: Solid-State Sci. Technol, 127(10): pp. 2216–2220, 1980

    Article  Google Scholar 

  100. C. C. Chao and W. V. Wang. “Planarization Enhancement of Polyimides by Dynamic Curing and the Effect of Multiple Coating,” Proc. 1st Technical Conf. Polyimides, pp. 783–793, 1982

    Google Scholar 

  101. L. E. Stillwagon and R. G. Larson. “Topographic Substrate Leveling During Spin Coating,” Proc. Symp. Patterning Sci. Technol., 90(1): ed. by R. Gleason, J. Hefferon, and L. White, The Electrochemical Soc, Pennington, NJ, pp. 230–238, 1989

    Google Scholar 

  102. D. R. Day, D. Ridley, J. Mario, and S. D. Senturia. “Polyimide Planarization in Integrated Circuits,” Proc. 1st Technical Conf. Polyimides, pp. 767–780, 1982

    Google Scholar 

  103. H. Akahoshi, M. Kawamoto, T. Itabashi, O. Miura, A. Takahashi, S. Kobayashi, M. Miyazaki, T. Mutho, M. Wajima, and T. Ishimaru. “Fine Line Circuit Manufacturing Technology with Electroless Copper Plating,” Proc. 44th ECTC, pp. 367–373, 1994

    Google Scholar 

  104. Y. Kasuya, Y. Takahashi, Y. Uno, Y. Iguchi, and T. Kanamori. “Planarization Process of Copper-Polyimide Thin Film Multilayer Substrate,” Proc. 14th IEEE/CHMT Japan Int. Electronic Manufacturing Technol. Symp., pp. 13–17, 1993

    Google Scholar 

  105. D. Frye, M. Skinner, R. Heistand II, P. Garrou, and T. Tessier. “Cost Implications of Large Area MCM Processing?”, Proc. MCM ‘94, pp. 69–80, 1994

    Google Scholar 

  106. G. White, E. Perfecto, T. DeMercurio, D. McHerron, T. Redmond, and M. Norcott, “Large Format Fabrication—A Practical Approach to Low Cost MCM-D”, Proc. MCM’ 94, pp. 86–93, 1994

    Google Scholar 

  107. L. H. Ng, “Economic Impact of Processing Technologies on Thin Film MCMs,” Proc. 42nd ECTC, pp. 1042–1045, 1992

    Google Scholar 

  108. T. F. Redmond, C. Prasad, and G. A. Walker. “Polyimide-Copper Thin Film Redistribution on Glass Ceramic/Copper Multilevel Substrates,” Proc. 41st ECTC, pp. 689–693, 1991

    Google Scholar 

  109. A. H. Landzberg. Microelectronics Manufacturing Diagnostics Handbook, van Nostrand Reinhold, New York, 1992

    Google Scholar 

  110. G. Messner, I. Turlik, J. W. Balde, and P. E. Garrou. Thin Film Multichip Modules, International Society for Hybrid Microelectronics, Reston, VA, 1992

    Google Scholar 

  111. T. A. Wassick. “Repair of Thin Film Wiring with Laser-Assisted Processes,” Proc. 42nd ECTC, pp. 759–762, 1992

    Google Scholar 

  112. L. Economikos and D. W. Ormond. “Thin Film Repair Process for Interlevel Electrical Connectors,” IBM Tech. Disclosure Bull, No. 2, pp. 17–19, 1991

    Google Scholar 

  113. G. P. Flayter, C. H. Perry, and S. K. Ray. “Repair Technique for Inter-Level Short,” IBM Tech. Disclosure Bull., 26(1): pp. 242–243, 1983

    Google Scholar 

  114. M. L. Cohen, R. A. Unger, and J. F. Milkovsky. “Laser Machining of Thin Films and Integrated Circuits,” Bell Sys. Tech. J., 47: pp. 385–407, 1968

    Article  Google Scholar 

  115. R. L. Waters and G. N. Ravich. “Circuit Surgery Using Xenon and YAG Lasers,” Int. Symp. Testing Failure Analysis, pp. 86–91, 1982

    Google Scholar 

  116. G. R. Levinson and V. I. Smilga. “Laser Processing of Thin Films (Review),” Sovi. J. Quantum Electron., 6(8): pp. 885–897, 1976

    Article  Google Scholar 

  117. T. H. Baum and P. B. Comita. “Laser-Induced Chemical Vapor Deposition of Metals for Microelectronic Technologies,” Thin Solid Films, 218(1-2): pp. 80–94, 1992

    Google Scholar 

  118. H. G. Muller, C. T. Galanakis, S. C. Sommerfeldt, T. J. Hirsch, and R. F. Miracky. “Laser Process for Personalization and Repair of Multi-chip Modules,” in Lasers in Microelectronics Manufacturing, ed. by B. Braren, SPIE Proc. No. 1598, pp. 132–140, SPIE, 1991

    Google Scholar 

  119. A. Reisman, D. Temple, and I. Turlik. “Metal-Organic Chemical Vapor Deposition for Repairing Broken Lines in Microelectronic Packages,” European Patent Application No. WO 92/08246, 1992

    Google Scholar 

  120. Y. Morishige and S. Kishida. “Highly Conductive Gold Direct Writing by Laser Induced CVD,” Spring Meeting Japan Soc. Appl. Phy., Vol. 2, No. 564, 1991

    Google Scholar 

  121. T. H. Baum, P. B. Comita, and R. L. Jackson. “Process for Interconnecting Thin-Film Electrical Circuits,” US Patent No. 4,880,959, 1989

    Google Scholar 

  122. M. E. Gross. “Laser Direct-Write Metallization in Thin Metallo-organic Films,” Chemtronics, 4: pp. 197–201, 1989

    Google Scholar 

  123. R. L. Melcher and N. S. Shiren. “Method for Selective Plating and Etching Using Resistive Heating,” IBM Tech. Disclosure Bull., 6(81): pp. 246–247, 1981

    Google Scholar 

  124. J. Partridge, B. Hussey, C. Chen, and A. Gupta. “Repair of Circuits by Laser Seeding and Constriction-Induced Plating,” IEEE Trans. Components Hybrids Manuf. Technol, 15(2): pp. 252–257, 1992

    Article  Google Scholar 

  125. E. F. Handford, J. M. Harvilchuck, M. J. Interrante, R. A. Jackson, R. N. Master, S. K. Ray, W. E. Sablinski, and T. A. Wassick. “Method and Structure for Repairing Electrical Lines,” US Patent No. 5,153,408, 1992

    Google Scholar 

  126. J. C. Logue, W. J. Kleinfelder, P. Lowy, J. R. Moulic, and W. Wu. “Techniques for Improving Engineering Productivity of VLSI Devices,” IBM J. Res. Devel., 25(3): pp. 107–115, 1981

    Article  Google Scholar 

  127. D. L. Klein, P. A. Leary-Renick, and R. Srinivasan. “Ablative Photodecomposition Process for Repair of Line Shorts,” IBM Tech. Disclosure Bull, 2(84): pp. 4669–4671, 1984

    Google Scholar 

  128. T. L. Michalka, W. Lukaszek, and J. D. Meindl. “A Redundant Metal-Polyimide Thin Film Interconnection Process for Wafer Scale Dimensions,” IEEE Trans. Semicond. Manuf., 3(4): pp. 158–167, 1990

    Article  Google Scholar 

  129. J. I. Raffel. “Laser Linking for Defect Avoidance and Customization,” in Proc. SPIE Lasers in Microlithography, ed. by D. J. Ehrlich, J. Y. Tsao, and J. S. Batchelder, Vol. 774, pp. 93–100, SPIE, 1987

    Google Scholar 

  130. W. G. Burger and C. W. Welgel. “Multilayer Ceramics Manufacturing,” IBM J. Res. Devel., 27(1): pp. 11–19, 1983

    Article  Google Scholar 

  131. M. Swaminathan, E. Perfecto, and K. Prasad. “Thin Film Multichip Module Technology at IBM: Design and Electrical Performance,” IEPS Conf. and Exhibit., pp. 780–787, 1993

    Google Scholar 

  132. M. E. Williams. “Production of MCP Chip Carriers,” Proc. 40th ECTC, pp. 408–411, 1990

    Google Scholar 

  133. D. J. Bendz, R. W. Gedney, and J. Rasile. “Cost/Performance Single-Chip Module,” IBM J. Res. Devel., 26(3): pp. 278–285, 1982

    Article  Google Scholar 

  134. R. R. Tummala, J. U. Knickerbocker, S. H. Knickerbocker, L. W. Herron, R. W. Nufer, R. N. Master, M. O. Neisser, B. M. Kellner, C. H. Perry, J. N. Humenik, T. F. Redmond, “High-Performance Glass-Ceramic/Copper Multilayer Substrate with Thin-Film Redistribution.,” IBM J. Res. Devel, 36(5): pp. 889–904, 1992

    Article  Google Scholar 

  135. E. E. Davidson, P. H. Harding, G. A. Katopis, M. G. Nealon, and L. L. Wu. “The Design of ES 9000 Module,” Proc. 41st ECTC, pp. 50–54, 1991

    Google Scholar 

  136. M. G. Bregman, A. Kimura, T. Matsui, H. Nishida, K. Nishiyama, H. Ohkuma, A. Tanaka, C. Kovac, and D. McQueeney. “A Thin Film Multichip Module for Workstation Applications,” Proc. 42nd ECTC, pp. 968–972, 1992

    Google Scholar 

  137. R. Tummala and B. Clark. “Multichip Packaging Technologies in IBM for Desktop to Mainframe Computers,” Proc. 42nd ECTC, pp. 1–9, 1992

    Google Scholar 

  138. H. Wessely, W. Turk, K. H. Schmidt, and G. Nagel. “Computer Packaging,” Siemens Res. Devel., Rep Bd 17: pp. 234–244, 1988

    Google Scholar 

  139. H. Brosamle, B. Brabetz, V. V. Ehrenstein, and F. Bachmann. “Technology for a Microwiring Substrate,” Siemens Res. Devel., Rep Bd 17(5): pp. 249–253, 1988

    Google Scholar 

  140. H. Brosamle. “High Density Multichip Module Based on PWB Technology,” 2nd Inter. Symp. on Printed Circuit: Future European Trends and Printed Circuit Technology, 1991

    Google Scholar 

  141. H. Wessely, O. Fritz, P. Klimke, W. Koschnick, and K. H. Schmidt. “Electronic Packaging in the 1990’s: The Perspective from Europe,” IEEE Trans. Components Hybrids Manuf. Technol., 14(2): pp. 272–284, 1991

    Article  Google Scholar 

  142. T. Inoue, H. Matsuyama, E. Matsuzaki, Y. Narizuka, M. Ishino, T. Takenaka, and M. Tanaka. “Microcarrier for LSI Chip Used in the Hitachi M-880 Processor Group,” IEEE Trans. Components Hybrids Manuf. Technol., 15(1): pp. 7–14, 1992

    Article  Google Scholar 

  143. F. Kobayashi, Y. Watanabe, M. Yamamoto, A. Anzai, A. Takahashi, T. Daikoku, and T. Fujita. “Hardware Technology for Hitachi M-880 Processor Group,” Proc. 41st ECTC, pp. 693–703, 1991

    Google Scholar 

  144. K. Mukai, A. Saiki, K. Yamanaka, S. Harada, and S. Shoji. “Planar Multi-level Interconnection Technology Employing a Polyimide,” IEEE Trans. Solid-State Circuits, SC-13: pp. 462–467, 1978

    Google Scholar 

  145. T. Nishida, K. Mukai, T. Inaba, T. Kato, I. Tezuka, and N. Horie. “Moisture Resistance of Polyimide Multilevel Interconnect LSI’s,” Proc. IEEE-IRPS, pp. 148–152, 1985

    Google Scholar 

  146. A. J. Blodgett and D. R. Barbour. “Thermal Conduction Module, a High Performance Multilayer Ceramic Package,” IBM J. Res. Devel., 26(1): pp. 30–36, 1982

    Article  Google Scholar 

  147. F. C. Chong, C. W. Ho, K. Liu, and S. Westbrook. “High Density Multichip Memory Package,” WESCON/85 Professional Program Session Record, Session 7, 1985

    Google Scholar 

  148. H. B. Bakoglu. Circuits, Interconnections and Packaging for VLSI, Addison-Wesley, Reading, MA, 1989

    Google Scholar 

  149. P. Dunbeck, R. Dischler, J. McElroy, and F. Swiatowiec. “HDSC and MCU Design and Manufacture,” Digital Tech. J., 2(4): pp. 99–108, 1990

    Google Scholar 

  150. D. Marshall and J. McElroy. “VAX 9000 Packaging—The Multi Chip Unit,” 35th COMPCON, pp. 54–57, 1990

    Google Scholar 

  151. P. Hardin, G. Melvin, and M. Nealon. “The ES/9000 Glass Ceramic Thermal Conduction Module Design for Manufacturability,” IEEE/CHMT’ 91 IEMT Symp., pp. 351–355, 1991

    Google Scholar 

  152. A. Dohya, T. Watari, and H. Nishimori. “Packaging Technology for the NEC SX-3/SX-X Supercomputer,” Proc. 40th ECTC, pp. 525–533, 1990

    Google Scholar 

  153. T. Watari, Private Communication

    Google Scholar 

  154. K. Umezawa, M. Kimura, H. Nishimori, T. Mizuno, K. Kimbara, and R. Nakazaki. “A High-Performance GaAs Multichip Package for Supercomputers,” NEC Res. Devel., 33(1): pp. 32–40, 1992

    Google Scholar 

  155. S. Mok. “Volume Implementation of MCM-D Based Cache SRAM Products for Workstation and PC Applications,” Proc. MCM’ 94, pp. 320–325, 1994

    Google Scholar 

  156. G. Gengel. “A Process for the Manufacturing of Cost Competitive MCM Substrates?”, Proc. MCM’ 94, pp. 182–187, 1994

    Google Scholar 

  157. R. Fillion, R. Wojnarowski, B. Gorowitz, W. Daum, and H. Cole. “Conformal Multichip-on-Flex (MCM-F) Technology?”, Proc. ICEMCM’ 95, pp. 52–58, 1995

    Google Scholar 

  158. M. Moser and T. G. Tessier. “Higher Density PCBs for Enhanced SMT and Bare Chip Assembly Applications,” Proc. ICEMCM’ 95, pp. 543–552, 1995

    Google Scholar 

  159. D. N. Light, J. S. Kresge, and C. R. Davis, “Integrated Flex: Rigid-Flex Capability in a High Performance MCM,” Proc. MCM’ 94, pp. 430–442, 1994

    Google Scholar 

  160. H. L. Heck, J. T. Kolias, and J. S. Kresge. “High Performance Carrier Technology,” Proc. 1993 IEPS Conf., pp. 771–779, 1993

    Google Scholar 

  161. C. Narayan, S. Purushothaman, F. Doany, and A. Deutsch. “Thin Film Transfer Process for MCM Interconnect Wiring,” Proc. MCM’ 94, pp. 105–114, 1994

    Google Scholar 

  162. M. Y. Lau, K. L. Tai, R. C. Frye, M. Saito, and D. D. Bacon. “A Versatile, IC Process Compatible MCM-D for High Performance and Low Cost Applications,” Proc. ICEMM’ 93, pp. 107–112, 1993

    Google Scholar 

  163. D. Scheid, “Advanced MCM-D with Embedded Resistors,” Proc. MCM’ 94, pp. 273–278, 1994

    Google Scholar 

  164. J. M. Cech, A. Burnett, and L. Knapp. “Pre-Imidized Photoimageable Polyimide as a Dielectric for High Density Multichip Modules,” Polymer Sci. Eng., 32(21): p. 1647, 1992

    Article  Google Scholar 

  165. T. Lenihan, L. Schaper, Y. Shi, G. Morcan, and J. Parkerson. “Embedded Thin Film Resistors, Capacitors and Inductors in Flexible Polyimide Films,” Proc. 46th ECTC, pp. 119–124, 1996

    Google Scholar 

  166. M. Oppermann, E. Feurer, and B. Holl. “Development and Realization of a Double-face Populated Multichip Module in Thin Film Technology for High Frequency Application,” Proc. MCM’ 94, pp. 279–284, 1994

    Google Scholar 

  167. R. Kambe, R. Imai, T. Takada, M. Arakawa, and M. Kuroda. “MCM Substrate with High Capacitance,” Proc. MCM’ 94, pp. 136–141, 1994

    Google Scholar 

  168. M. Tsukada, J. Cross, M. Nishizawa, K. Kurihara, and N. Kamehara. “Preparation and Characterization of Dielectric Thin Films for Decoupling Capacitors,” Proc. ICEMCM’ 95, pp. 347–352, 1995

    Google Scholar 

  169. D. Dimos, S. Lockwood, R. Schwartz, and M. Rodgers. “Thin-Film Decoupling Capacitors for Multi-Chip Modules,” Proc. 44th ECTC, pp. 894–899, 1994

    Google Scholar 

  170. T. Garino, D. Dimos, and S. Lockwood. “Integration of Thin Film Decoupling Capacitors,” Proc. ISHM’ 94., pp. 179–184, 1994

    Google Scholar 

  171. T. Takken and D. Tuckerman. “Integral Decoupling Capacitance Reduces Multichip Module Ground Bounce,” Proc. 43rd ECTC, pp. 79–84, 1993

    Google Scholar 

  172. D. Tuckerman, D. Benson, H. Moore, J. Horner, and J. Gibbons. “A High-Performance Second-Generation SPARC MCM,” Proc. MCM’ 94, pp. 314–319, 1994

    Google Scholar 

  173. L. Matthew, N. Brathwaite, K. Flatow, H. Whittmore, and L. Bauer. “Production Update: Report on Volume MCM Implementation,” Proc. ICEMCM’ 95, pp. 229–234, 1995

    Google Scholar 

  174. P. Chahal, R. Tummala, M. Allen, and M. Swaminathan. “A Novel Integrated Decoupling Capacitor for MCM-L Technology,” Proc. 46th ECTC, pp. 125–132, 1996

    Google Scholar 

  175. C. H. Ahn, Y. J. Kim, and M. G. Allen. “A Fully Integrated Planar Toroidal Inductor with a Micromachined Nickel-Iron Magnetic Bar,” IEEE Trans. Components Packaging Manuf. Technol., Part A, 17(3): pp. 463–469, 1994

    Article  Google Scholar 

  176. W. Baker. “Low Cost Thin Film MCMs,” ARPA WWW homepage (http://eto.sysplan.com/ETO/EI-Packaging/presentation), 1995

  177. M. Parodi, W. Batchelder, J. McKibben, and P. Haaland. “Developments and Trends in Polymer Coating Technologies for Flat-Panel-Display Manufacturing,” SID 94 Digest, pp. 933–935, 1994

    Google Scholar 

  178. F. Bachmann. “Excimer Lasers in a Fabrication Line for a Highly Integrated Printed Circuit Board,” Chemtronics, 4(3): pp. 149–152, 1989

    Google Scholar 

  179. K. Jain, J. Hoffman, T. Dunn, W. Folster, and D. Panchal. “Large-Area, High-Throughput, High-Resolution Patterning and Via-Drilling System,” Proc. ICEMCM’ 95, pp. 327–335, 1995

    Google Scholar 

  180. R. Patel, W. Advocate, and S. Mukkavilli. “Projection Laser Ablation Mask Alternatives,” Proc. ICEMCM’ 95, pp. 320–326, 1995

    Google Scholar 

  181. A. E. Nader. “Photodefinable Polyimides Designed for Use as Multilayer Dielectrics for Multi-Chip Modules?”, Proc. MCM’ 92, pp. 439–443, 1992

    Google Scholar 

  182. B. D. Kotzias, A. Nader, D. Murray III, and W. Lautenberger. “Application of a Photodefinable Polyimide Process for Manufacturing Multi-Chip Modules,” Proc. ICEMM,’ 93, pp. 46–50, 1993

    Google Scholar 

  183. C. H. Ting, M. Paunovic, P. L. Pai, and G. Chiu. “Selective Electroless Metal Deposition for Integrated Circuit Fabrication,” J. Electrochem. Soc., 136(2): pp. 462–466, 1989

    Article  Google Scholar 

  184. S. M. Ho, T. H. Wang, H. L. Chen, K. M. Lian, and A. Hung. “Metallization of Polyimide Film by Wet Process,” J. Appl. Polymer Sci., 51(8): pp. 1373–1380, 1994

    Article  Google Scholar 

  185. M. Matsuoka, J. Murai, and C. Iwakura. “Kinetics of Electroless Copper Plating and Mechanical Properties of Deposits,” J. Appl. Polymer Sci., 139(9): pp. 2466–2470, 1992

    Google Scholar 

  186. K. Kondo, J. Ishikawa, O. Takenada, and T. Matsubara. “Acceleration of Electroless Copper Deposition in the Presence of Excess Triethanolamine,” J. Electrochem. Soc., 138(12): pp. 3629–3633, 1991

    Article  Google Scholar 

  187. T. N. Vorob’eva, V. A. Rukhlya, V. V. Sviridov, and E. V. Gert. “Selective Deposition of Copper on a Polyimide Film from a Chemical Metallization Bath,” J Appl. Chem. USSR, 59(3): pp. 508–513, 1986

    Google Scholar 

  188. S. Nakahara and Y. Okinaka. “Microstructure and Mechanical Properties of Electroless Copper Deposits,” Annu. Rev. Mater. Sci., Vol. 21, pp.93–129, 1991

    Article  Google Scholar 

  189. R. R. Thomas and J. M. Park. “Vapor Phase Deposition of Palladium for Electroless Copper Plating,” J. Electrochem. Soc, 136(6): pp. 1661–1666, 1989

    Article  Google Scholar 

  190. E. K. Yung and L. T. Romankiw. “Plating of Copper into Through-Holes and Vias,” J. Electrochem. Soc, 136(1): pp. 203–215, 1989

    Article  Google Scholar 

  191. H. Yoshiki, V. Alexandruk, K. Hashimoto, and A. Fujishima. “Electroless Copper Plating Using ZnO Thin Film Coated on a Glass Substrate,” J. Electrochem. Soc., 141(5): pp. L56–L58, 1994

    Article  Google Scholar 

  192. H. Koyano, M. Kato, and H. Takenouchi. “Electroless Copper Plating from Copper-Glycerin Complex Solution,” J Electrochem. Soc, 139(11): pp. 3112–3116, 1992

    Article  Google Scholar 

  193. R. Jagannathan and M. Krishnan. “Electroless Plating of Copper at a Low pH Level,” IBM J. Res. Devel., 37(2): pp. 117–123, 1993

    Article  Google Scholar 

  194. N. V. Mandich and G. A. Krulik. “Fundamentals of Electroless Copper Bath Operation for Printed Circuit Boards,” Metal Finishing, 91(1): pp. 33–41, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tummala, R., Li, W., Tessier, T., Wassick, T. (1997). Thin-Film Packaging. In: Tummala, R.R., Rymaszewski, E.J., Klopfenstein, A.G. (eds) Microelectronics Packaging Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6037-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6037-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7767-2

  • Online ISBN: 978-1-4615-6037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics