Skip to main content

What Are the Mechanisms of Heat Shock Protein-Mediated Cytoprotection Under ATP Deprivation?

  • Chapter
  • 69 Accesses

Abstract

As was reviewed in chapters 4-6: first, transient ATP depletion induces heat shock gene expression and HSP synthesis; and, second, the elevated level of HSP(s) is associated with the protection of various mammalian cells from injury and death under metabolic (or ischemic) stress. Both conclusions were well-grounded and in fact we address here a special adaptive reaction which confers tolerance to energy starvation, thus allowing a cell to withstand sustained deprivation of dATP. Never theless, it is still poorly understood how excess HSP(s) compensates for ATP deficiency and maintains the viability of ATP-deprived cells. In this chapter, we present some speculations and hypotheses which might, at least in part, clarify this intriguing problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabai VL, Kabakov AE. Rise in heat-shock protein level confers tolerance to energy deprivation. FEBS Lett 1993; 327: 247–250.

    Article  Google Scholar 

  2. Kabakov AE, Gabai VL. Heat shock-induced accumulation of 70-kDa stress protein (HSP70) can protect ATP-depleted tumor cells from necrosis. Exp Cell Res 1995; 217: 15–21.

    Article  Google Scholar 

  3. Gabai VL, Mosina VA, Budagova KR, Kabakov AE. Spontaneous over-expression of heat-shock proteins in Ehrlich ascites carcinoma cells during in vivo growth. Biochem Mol Biol Int 1995; 35: 95–102.

    Google Scholar 

  4. Kabakov AE, Molotkov AO, Budagova KR et al. Adaptation of Ehrlich ascites carcinoma cells to energy deprivation in vivo can be associated with heat shock protein accumulation. J Cell Physiol 1995; 165: 1–6.

    Article  Google Scholar 

  5. Mestril R, Chi S-H, Sayen R et al. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest 1994; 93: 759–767.

    Article  Google Scholar 

  6. Heads RJ, Yellon DM, Latchman DS. Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. J Mol Cell Cardiol 1995; 27: 1669–1678.

    Article  Google Scholar 

  7. Papadopoulos MC, Sun XY, Cao JM et al. Over-expression of HSP-70 protects astro cytes from combined oxygen-glucose depri vation. Neuroreport 1996; 7: 429–432.

    Article  Google Scholar 

  8. Amin V, Cumming DV, Latchman DS. Over-expression of heat shock protein 70 protects neuronal cells against both thermal and ischaemic stress but with different efficiences. Neurosci Lett 1996; 206: 45–48.

    Article  Google Scholar 

  9. Gabai VL, Zamulaeva IV, Mosin AF et al. Resistance of Ehrlich tumor cells to apoptosis can be due to accumulation of heat shock proteins. FEBS Lett 1995; 375: 21–26.

    Article  Google Scholar 

  10. Radford NB, Fina M, Benjamin IJ et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci USA 1996; 93: 2339–2342.

    Article  Google Scholar 

  11. Saad S, Kanai M, Awane M et al. Protective effect of heat shock pretreatment with heat shock protein induction before hepatic warm ischemic injury caused by Pringle’s maneu ver. Surgery 1995; 118: 510–516.

    Article  Google Scholar 

  12. Yellon DM, Pastini E, Cargoni A et al. The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. J Mol Cell Cardiol 1992; 24: 895–907.

    Article  Google Scholar 

  13. Garramone RR Jr, Winters RM, Das DK et al. Reduction of skeletal muscle injury through stress conditioning using the heat shock response. Plastic Reconst Surg 1994; 93: 1242–1247.

    Article  Google Scholar 

  14. Maridonneau-Parini I, Clerc J, Polla BS. Heat shock inhibits NADPH oxidase in human neutrophils. Biochem Biophys Res Commun 1988; 154: 179–186.

    Article  Google Scholar 

  15. Maridonneau-Parini I, Malawista SE, Stubbe H et al. Heat shock in human neutrophils: Superoxide generation is inhibited by a mechanism distinct from heat-denaturation of NADPH oxidase and is protected by heat shock proteins in thermotolerant cells. J Cell Physiol 1993; 156: 204–211.

    Article  Google Scholar 

  16. Hirvonen MR, Brune B, Lapetina EG. Heat shock proteins and macrophage resistance to the nitric oxide. Biochem J 1996; 315: 845–849.

    Google Scholar 

  17. Williams RS, Thomas JA, Fina M et al. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J Clin Invest 1993; 92: 503–508.

    Article  Google Scholar 

  18. Nguyen VT, Bensaude O. Increased thermal aggregation of proteins in ATP-depleted mammalian cells. Eur J Biochem 1994; 220: 239–246.

    Article  Google Scholar 

  19. Hohfeld J, Minami Y, Hartl FU. Hip, a novel cochaperone involved in the eukary-otic Hsc70/Hsp40 reaction cycle. Cell 1995; 83: 589–598.

    Article  Google Scholar 

  20. Pelham HR. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 1986; 46: 959–961.

    Article  Google Scholar 

  21. Rothman JE. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 1989; 59: 591–601.

    Article  Google Scholar 

  22. Li GC, Li L, Liu RY et al. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc Natl Acad Sei USA 1992; 89: 2036–2040.

    Article  Google Scholar 

  23. Stege GJJ, Li GC, Li L et al. On the role of hsp72 in heat-induced intranuclear protein aggregation. Int J Hyperthermia 1994; 10: 659–674.

    Article  Google Scholar 

  24. Stege GJJ, Li L, Kampinga HH et al. Importance of the ATP-binding domain and nucleolar localization domain of HSP72 in the protection of nuclear proteins against heat-induced aggregation. Exp Cell Res 1994; 214: 279–284.

    Article  Google Scholar 

  25. Palleros DR, Welch WJ, Fink AL. Interac tion of hsp70 with unfolded proteins: Ef fects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci USA 1991; 88: 5719–5723.

    Article  Google Scholar 

  26. Palleros DR, Reid KL, Shi L et al. ATP induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 1993; 365: 664–666.

    Article  Google Scholar 

  27. Palleros DR, Shi L, Reid KL, Fink AL. Hsp70-protein complexes; complex stability and conformation of bound substrate protein. J Biol Chem 1994; 269: 13107–13114.

    Google Scholar 

  28. Hightower LE, Sadis SE. Interaction of ver tebrate hsc70 and hsp70 with unfolded proteins and peptides. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Bi ology of Heat Shock Proteins and Molecu lar Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 179–207.

    Google Scholar 

  29. Lewis MJ, Pelham HRB. Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J 1985; 4: 3137–3143.

    Google Scholar 

  30. Ohtsuka K, Utsumi KR, Kaneda T, Hattori H. Effect of ATP on the release of hsp 70 and hsp 40 from the nucleus in heat-shocked HeLa cells. Exp Cell Res 1993; 209: 357–366.

    Article  Google Scholar 

  31. Beckmann RP, Lovett M, Welch WJ. Examining the function and regulation of hsp70 in cells subjected to metabolic stress. J Cell Biol 1992; 117: 1137–1150.

    Article  Google Scholar 

  32. La Thangue NB. A major heat shock pro tein defined by a monoclonal antibody. EMBO J 1984; 3: 1871–1879.

    Google Scholar 

  33. Margulis BA, Welsh M. Analysis of protein binding to heat shock protein 70 in pancre atic islet cells exposed to elevated tempera ture or interleukin lβ. J Biol Chem 1991; 266: 9295–9298.

    Google Scholar 

  34. Haus U, Trommler P, Fisher PR et al. The heat shock cognate protein from Dktyostelium affects actin polymerization through inter action with the actin-binding protein cap32/ 34. EMBO J 1993; 12: 3763–3771.

    Google Scholar 

  35. Liao J, Lowthert LA, Ghori N, Omary MB. The 70-kDa heat shock proteins associate with glandular intermediate filaments in an ATP-dependent manner. J Biol Chem 1995; 270: 915–922.

    Article  Google Scholar 

  36. Tuijl MJM, van Bergen en Henegouwen PMP, van Wijk R et al. The isolated neo natal rat-cardiomyocyte used in an in vitro model for ‘ischemia’. II. Induction of the 68 kDa heat shock protein. Biochim Biophys Acta 1991; 1091: 278–284.

    Article  Google Scholar 

  37. Imamoto N, Matsuoka Y, Kurihara T et al. Antibodies against 70-kD heat shock cog nate protein inhibit mediated nuclear im port of karyophilic proteins. J Cell Biol 1992; 119: 1047–1061.

    Article  Google Scholar 

  38. Jaattela M. Overexpression of major heat shock protein hsp70 inhibits tumor necro sis factor-induced activation of phospholi pase A2. J Immunol 1993; 151: 4286–4294.

    Google Scholar 

  39. Arora AS, Degroen PC, Croall DE et al. Hepatocellular carcinoma cells resist necro sis during anoxia by preventing phospholi pasemediated calpain activation. J Cell Physiol 1996; 167: 434–442.

    Article  Google Scholar 

  40. Mivechi NF, Trainor LD, Hahn GM. Purified mammalian HSP-70 kDa activates phosphoprotein phosphatases in vitro. Biochem Biophys Res Commun 1993; 192: 954–963.

    Google Scholar 

  41. Kukrejad RC, Hess ML. The oxygen free radical system: from equations through membrane protein interactions to cardiovas cular injury and protection. Cardiovasc Res 1992; 26: 641–655.

    Article  Google Scholar 

  42. Marber MS, Mestril R, Chi SH et al. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995; 95: 1446–1456.

    Article  Google Scholar 

  43. Jacquier-Sarlin MR, Fuller K, Dinh-Xuan AT, Richard M-J, Polla BS. Protective ef fects of hsp70 in inflamation. Experientia 1994; 50: 1031–1038.

    Article  Google Scholar 

  44. Parsell DA, Lindquist S. Heat shock proteins and stress tolerance. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biol ogy of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 457–494.

    Google Scholar 

  45. Parsell DA, Kowal AS, Singer MA, Lindquist S. Protein disaggregation mediated by heat-shock protein HsplO4. Nature 1994; 372: 475–478.

    Article  Google Scholar 

  46. Koyasu S, Nishida E. Kadowaki T et al. Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc Natl Acad Sci USA 1986; 83: 8054–8058.

    Article  Google Scholar 

  47. Nishida E, Koyasu S, Sakai H, Yahara H. Calmodulin-regulated binding of the 90 kDa heat shock protein to actin filaments. J Biol Chem 1986; 261: 16033–16036.

    Google Scholar 

  48. Yahara I, Iida H, Koyasu S. A heat shock-resistant variant of Chinese hamster cell line contitutively expressing heat shock protein of Mr. 90,000 at high level. Cell Struct Funct 1989; 11: 65–73.

    Article  Google Scholar 

  49. Kabakov AE, Gabai VL. Heat shock pro teins maintain the viability of ATP-deprived cells: what is the mechanism? Trends Cell Biol 1994; 4: 193–196.

    Article  Google Scholar 

  50. Kellermayer MSZ, Csermely P. ATP in duces dissociation of the 90 kDa heat shock protein (hsp90) from F-actin: In terference with the binding of heavy meromyosin. Biochem Biophys Res Commun 1995; 211: 166–174.

    Article  Google Scholar 

  51. Csermely P, Kajtar J, Hollosi M et al. The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure. Biochem Biophys Res Commun 1994; 202: 1557–1663.

    Article  Google Scholar 

  52. Kato H, Araki T, Itoyama Y et al. An immunohistochemical study of heat shock protein-27 in the hippocampus in a gerbil model of cerebral ischemia and ischemic tolerance. Neuroscience 1995; 68: 65–71.

    Article  Google Scholar 

  53. Maulik N, Das DK. Cardioprotective effect of TNFα is mediated through the myocar-dial adaptation to oxidative stress. J Mol Cell Cardiol 1993; 25[suppl. III]: S43.

    Google Scholar 

  54. Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J. Induction of Chinese hamster HSP27 gene expression in mouse cells con fers resistance to heat shock. J Biol Chem 1993; 268: 3420–3429.

    Google Scholar 

  55. Lavoie JN, Lambert H, Hickey E et al. Modulation of cellular thermoresistance and actin filament stability accompanies phos-phorylation-induced changes in the oligo-meric structure of heat shock protein 27. Mol Cell Biol 1995; 15: 505–516.

    Google Scholar 

  56. Huot J, Lambert H, Lavoie JN et al. Char acterization of 45-kDa/54-kDa HSP27 ki-nase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 2 7-kDa heat-shock protein HSP27. Eur J Biochem 1995; 227: 416–427.

    Article  Google Scholar 

  57. Huot J, Houle F, Spitz DR, Landry J. HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 1996; 56: 273–279.

    Google Scholar 

  58. Miron T, Wilchek M, Geiger B. Character ization of an inhibitor of actin polymeriza tion in vinculin-rich fraction of turkey giz zard smooth muscle. Eur J Biochem 1988; 178: 543–553.

    Article  Google Scholar 

  59. Miron T, Vancompernolle K, Vanderkerckhove J et al. A 25-kD inhibi tor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 1991; 114: 255–261.

    Article  Google Scholar 

  60. Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phospho-rylation of heat shock protein 27. J Biol Chem 1993; 268: 24210–24214.

    Google Scholar 

  61. Arrigo A-P, Landry J. Expression and func tion of the low-molecular weight heat shock proteins. In: Morimoto RI, Tissieres A and Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 335–373.

    Google Scholar 

  62. Benndorf R, Hayeb K, Ryazantsev S et al. Phosphorylation and supra-molecular orga nization of murine small heat shock protein HSP25 abolish its actin polymerization-in hibiting activity. J Biol Chem 1994; 269: 20780–20784.

    Google Scholar 

  63. Loktionova SA, Ilyinskaya OP, Gabai VL, Kabakov AE. Distinct effects of heat shock and ATP depletion on distribution and isoform patterns of human Hsp27 in endot-helial cells. FEBS Lett 1996; 392:100–104.

    Article  Google Scholar 

  64. Pombo CM, Bonventre JV, Avruch J et al. Stress-activated protein kinases are major c-jun N-terminal kinases activated by ischemia and reperfusion. J Biol Chem 1994; 269: 26546–26551.

    Google Scholar 

  65. Gaestel M, Benndorf R, Hayess K et al. Dephosphorylation of the small heat shock protein hsp25 by calcium/calmodulin-de-pendent (Type 2B) protein phosphatase. J Biol Chem 1992; 267: 21607–21611.

    Google Scholar 

  66. Mehlen P, Preville X, Chareyron P et al. Constitutive expression of human hsp27, or human αB-crystallin confers resistance to TNF-and oxidative stress-induced cytotox-icity in stably transfected murine L929 fi-broblasts. J Immunol 1995; 154: 363–374.

    Google Scholar 

  67. Mehlen P, Kretzrremy C, Preville X, Arrigo AP. Human hsp27, Drosophila hsp27 and human alpha B-crystallin expression-medi ated increase in glutathione is essential for the protective activity of these proteins against TNF alpha-induced cell death. EMBO J 1996; 15: 2695–2706.

    Google Scholar 

  68. Jacob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chap erones. J Biol Chem 1993; 268: 1517–1520.

    Google Scholar 

  69. Knauf U, Jakob U, Engel K et al. Stress-and mitogen-induced phosphoryl.ation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chap erone properties and cellular thermoresis tance. EMBO J 1993; 13: 54–60.

    Google Scholar 

  70. Kampinga HH, Brunsting JF, Stege GJJ et al. Cells overexpressing Hsp27 show accel erated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 1994; 204: 1170–1177.

    Article  Google Scholar 

  71. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 1992; 89: 10449–10453.

    Article  Google Scholar 

  72. Das KP, Petrash JM, Surewicz WK. Confor mational properties of substrate proteins bound to a molecular chaperone alpha crystallin. J Biol Chem 1996; 271: 10449–10452.

    Article  Google Scholar 

  73. Chiesi M, Longoni S, Limbruno U. Cardiac alpha-crystallin. III. Involvement during heart ischemia. Mol Cell Biochem 1990; 97: 129–136.

    Article  Google Scholar 

  74. Bennardini F, Wrzosek A, Chiesi M. αB-Crystallin in cardiac tissue: association with actin and desmin filaments. Circ Res 1992; 71: 288–294.

    Article  Google Scholar 

  75. Barbato R, Menabo R, Dainese P et al. Binding of cytosolic proteins to myofibrils in ischemic rat hearts. Circ Res 1996; 78: 821–828.

    Article  Google Scholar 

  76. Gopalsrivastava R, Haynes JI, Piatigorsky J. Regulation of the murine alpha B-crystallin/ small heat shock protein gene in cardiac muscle. Mol Cell Biol 1995; 15: 7081–7090.

    Google Scholar 

  77. Kato H, Chen T, Liu XH et al. Immuno-histochemical localization of ubiquitin in gerbil hippocampus with tolerance to ischemia. Brain Res 1993; 619: 339–343.

    Article  Google Scholar 

  78. Jentsch S. Ubiquitin-dependent protein degradation: a cellular perspective. Trends Cell Biol 1992; 2: 98–103.

    Article  Google Scholar 

  79. Morimoto T, Ide T, Ihara Y et al. Transient ischemia depletes free ubiquitin in the ger bil hippocampal CA1 neurons. Am J Pathol 1996; 148: 249–257.

    Google Scholar 

  80. Vile GF, Basu-Modak S, Waltner C, Tyrrell RM. Hemeoxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc Natl Acad Sci USA 1994; 91: 2607–2610.

    Article  Google Scholar 

  81. Guyton KZ, Spitz DR, Holbrook NJ. Expression of stress response genes GADD153, c-jun, and hemeoxygenase in H2O2− and O2-resistant fibroblasts. Free Rad Biol Med 1996; 20: 735–741

    Article  Google Scholar 

  82. Sharma HS, Maulik N, Gho BCG et al. Coordinated expression of hemeoxygenase-1 and ubiquitin in the porcine heart subgected to ischemia and reperfusion. Mol Cell Biochem 1996; 157: 111–116.

    Article  Google Scholar 

  83. Maulik N, Sharma HS, Das DK. Induction of the haem oxygenase gene expression dur ing the reperfusion of ischemic rat myocar dium. J Mol Cell Cardiol 1996; 28: 1261–1270.

    Article  Google Scholar 

  84. Abraham NG, Lavrovsky Y, Schwartzman ML et al. Transfection of the hemeoxygenase gene into rabbit coronary microvessel en dothelial cells: protective effect against heme and hemoglobin toxicity. Proc Natl Acad Sci USA 1995; 92: 6798–6802.

    Article  Google Scholar 

  85. Nakai A, Satoh M, Hirayoshi K, Nagata K. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol 1992; 117: 903–914.

    Article  Google Scholar 

  86. Steenbergen C, Hill ML, Jennings RB. Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ Res 1985; 57: 864–875.

    Article  Google Scholar 

  87. Margulis BA, Welsh M. Isolation of hsp70-binding proteins from bovine muscle. Biochem Biophys Res Commun 1991; 178: 1–7.

    Article  Google Scholar 

  88. Macejak DG, Luftig RB. Stabilization of actin filaments at early times after adenovi-rus infection and in heat-shocked cells. Virus Res 1991; 19: 31–45.

    Article  Google Scholar 

  89. Eddy RJ, Sauterer RA, Condeelis JS. Aginactin, an agonist-regulated F-actin cap ping activity is associated with an Hsc70 in Dictyostelium. J Biol Chem 1993; 268: 23267–23274.

    Google Scholar 

  90. Frydman J, Hartl FU. Principles of chaper-one-assisted protein folding: differences be tween in vitro and in vivo mechanisms. Science 1996; 272: 1497–1502.

    Article  Google Scholar 

  91. Flaherty KM, DeLuca-Flaherty C, McKay DB. Three dimensional structure of the ATPase fragment of a 7 OK heat-shock cognate protein. Nature 1990; 346: 623–628.

    Article  Google Scholar 

  92. Tsang TC. New model for 70 kDa heat-shock proteins’ potential mechanisms of function. FEBS Lett 1993; 323: 1–3.

    Article  Google Scholar 

  93. Plumier J-CL, Currie RW. Heat shock-in duced myocardial protection against ischemic injury: a role for Hsp70? Cell Stress & Chaperones 1996; 1: 13–17.

    Article  Google Scholar 

  94. Martin JL, Mestril R, Hilal-Dandan R, Dillmann W. Small heat shock proteins and protection against ischemic injury in cardiomyocytes. Abstracts of 1996 Meeting on Molecular Chaperones & The Heat Shock Response (May 1-5, 1996, Cold Spring Harbor, NY), p. 342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kabakov, A.E., Gabai, V.L. (1997). What Are the Mechanisms of Heat Shock Protein-Mediated Cytoprotection Under ATP Deprivation?. In: Heat Shock Proteins and Cytoprotection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6007-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6007-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7752-8

  • Online ISBN: 978-1-4615-6007-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics