Skip to main content

Heat Shock Proteins and the Regulation of Heat Shock Gene Expression in Eukaryotes

  • Chapter
Heat Shock Proteins and Cytoprotection

Abstract

Our first chapter is devoted to the general description of stress proteins and peculiarities of their expression in eukaryotic cells. We also introduce readers to the modern views of the problem of “negative regulation” of heat shock gene transcription to facilitate an understanding of the subsequent sections of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritossa F. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 1962; 18: 571–573.

    Google Scholar 

  2. Tissieres A, Mitchell HK, Tracy UM. Pro tein synthesis in salivary glands of D. melanogaster. Relation to chromosome puffs. J Mol Biol 1974; 84: 389–398.

    Google Scholar 

  3. McKrnzie SL, Lindquist S, Meselson M. Translation in vitro of Drosophila heat-shock messages. J Mol Biol 1977; 117: 279–283.

    Google Scholar 

  4. Mirault ME, Goldschmidt-Clermont M, Moran L et al. The effect of heat shock on gene expression in Drosophila melanogaster. Cold Spring Harbor Simp Quant Biol 1978; 42: 819–827.

    Google Scholar 

  5. Parsell DA, Sanchez Y, Stitzel JD, Lindquist S. HSP104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 1991; 353: 270–273.

    Google Scholar 

  6. Parsell DA, Lindquist S. Heat shock proteins and stress tolerance. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 457–494.

    Google Scholar 

  7. Sanchez Y, Lindquist SL. HSP104 required for induced thermotolerance. Science 1990; 248: 1112–1115.

    Google Scholar 

  8. Sanches Y, Taulien J, Borkovich KA, Lindquist S. HSP104 is required for tolerance to many forms of stress. EMBO J 1992; 11: 2357–2364.

    Google Scholar 

  9. Parsell DA, Kowal AS, Singer MA, Lindquist S. Protein disaggregation mediated by heat-shock protein HsplO4. Nature 1994; 372: 475–478.

    Google Scholar 

  10. Wickner S, Gottesman S, Skowyra D et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 1994; 91: 12218–12222.

    Google Scholar 

  11. Bradwell JCA, Craig EA. Ancient heat shock gene is dispensable. J Bacteriol 1988; 170: 2977–2983.

    Google Scholar 

  12. Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22: 631–637.

    Google Scholar 

  13. Gething MJ, Sambrook J. Protein folding in the cell. Nature 1992; 355: 33–45.

    Google Scholar 

  14. Welch WJ. Mammalian stress response: cell physiology, structure/function of stress pro teins, and implications for medicine and disease. Physiol Rev 1992; 72: 1063–1081.

    Google Scholar 

  15. Pratt WB. The role of heat shock proteins in regulating the function, folding, and traf ficking of the glucocorticoid receptor. J Biol Chem 1993; 268: 21455–21458.

    Google Scholar 

  16. Xu Y, Lindquist S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sei USA 1993; 90: 7074–7078.

    Google Scholar 

  17. Legagneux V, Morange M, Bensaude O. Heat shock increases turnover of 90-kDa heat shock protein phosphate groups in HeLa cells. FEBS Lett 1991; 291: 359–362.

    Google Scholar 

  18. Csermely P, Kahn CR. The 90-kDa heat shock protein (hsp-90) processes an ATP binding site and autophosphorylating ac tivity. J Biol Chem 1991; 266: 4943–4950.

    Google Scholar 

  19. Nadeau K, Das A, Walsh ST. Hsp90 chaperonins process ATPase activity and bind heat shock transcriptional factor and peptidyl prolyl isomerases. J Biol Chem 1993; 268: 1479–1487.

    Google Scholar 

  20. Csermely P, Kajtar J, Hollosi M et al. The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin struc ture. Biochem Biophys Res Commun 1994; 202: 1557–1663.

    Google Scholar 

  21. Wiech H, Buchner J, Zimmermann R, Jacob U. Hsp90 chaperones protein folding in vitro. Nature 1992; 358: 169–170.

    Google Scholar 

  22. Bohen SP, Yamamoto KR. Modulation of steroid receptor signal transduction by heat shock proteins. In: Morimoto RI, Tissieresm A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chap erones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 313–334.

    Google Scholar 

  23. Koyasu S, Nishida E., Kadowaki T et al. Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding pro teins. Proc Natl Acad Sci USA 1986; 83: 8054–8058.

    Google Scholar 

  24. Nishida E, Koyasu S, Sakai H, Yahara H. Calmodulin-regulated binding of the 90 kDa heat shock protein to actin filaments. J Biol Chem 1986; 261: 16033–16036.

    Google Scholar 

  25. Kellermayer MSZ, Csermely P. ATP induces dissociation of the 90 kDa heat shock pro tein (hsp90) from F-actin: Interference with the binding of heavy meromyosin. Biochem Biophys Res Commun 1995; 211: 166–174.

    Google Scholar 

  26. Yahara I, Iida H, Koyasu S. A heat shock-resistant variant of Chinese hamster cell line contitutively expressing heat shock protein of Mr. 90,000 at high level. Cell Struct Funct 1989; 11: 65–73.

    Google Scholar 

  27. Borkovich KA, Farrelly FW, Finkelstein DB et al. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 1989; 9: 3919–3930.

    Google Scholar 

  28. Bansal GS, Norton PM, Latchman DS. The 90-kDa heat shock protein protects mam-malian cells from thermal stress but not from viral infection. Exp Cell Res 1991; 195: 303–306.

    Google Scholar 

  29. Akner G, Mossberg K, Sundqvist K-G et al. Evidence for reversible, non-microtubule and non-microfilament-dependent nuclear translocation of hsp90 after heat shock in human fibroblasts. Eur J Cell Biol 1992; 58: 356–364.

    Google Scholar 

  30. McKay DB, Wilbanks SM, Flaherty KM et al. Stress-70 proteins and their interaction with nucleotides. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chap erones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 153–177.

    Google Scholar 

  31. Beckmann RP, Mizzen LA, Welch WJ. In teraction of HSP 70 with newly synthesized proteins: Implications for protein folding and assembly. Science 1990; 248: 850–854.

    Google Scholar 

  32. Frydman J, Hartl FU. Molecular chaperone functions of hsp70 and hsp60 in proteins folding. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1994: 251–283.

    Google Scholar 

  33. Palleros D, Welch W, Fink A. Interaction of Hsp70 with unfolded proteins: Effects of temperature and nucleotides on the kinetics of binding. Proc. Natl Acad Sci USA 1991; 88: 5719–5723.

    Google Scholar 

  34. Palleros DR, Reid KL, Shi L et al. ATP-induced protein-hsp70 complex dissociation requires K+ and does not involve ATP hy drolysis. Analogy to G proteins. Nature 1993; 365: 664–666.

    Google Scholar 

  35. Sadis S, Hightower LE. Unfolded proteins stimulate molecular chaperone Hsc70 AT-Pase by accelerating ADP/ATP exchange. Biochemistry 1992; 31: 9406–9412.

    Google Scholar 

  36. Hightower LE, Sadis SE, Takenaka IM. In teractions of vertebrate hsc70 and hsp70 with unfolded proteins and peptides. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Labora tory Press, 1994: 179–207.

    Google Scholar 

  37. Georgopoulos C, Welch WJ. Role of major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993; 9: 601–634.

    Google Scholar 

  38. Rassow J, Voos W, Pfanner N. Partner pro teins determine multiple functions of Hsp70. Trends Cell Biol 1995; 5: 207–212.

    Google Scholar 

  39. DeLuca-Flaherty C, McKay DB, Parham P, Hill BL. Uncoating protein (hsc70) binds a conformationally labile domain of clathrin light chain LC to stimulate ATP hydroly sis. Cell 1990; 62: 875–887.

    Google Scholar 

  40. La Thangue NB. A major heat-shock pro tein defined by a monoclonal antibody. EMBO J 1984; 3: 1871–1879.

    Google Scholar 

  41. Nover L. In Heat Shock Response. Boca Raton: CRC Press, Inc. 1991: 509.

    Google Scholar 

  42. Haus U, Trommler P, Fisher PR et al. The heat shock cognate protein from Dictyostelium affects actin polymerization through inter action with the actin-binding protein cap32/ 34. EMBO J 1993; 12: 3763–3771.

    Google Scholar 

  43. Liao J, Lowthert LA, Ghori N, Omary MB. The 70-kDa heat shock proteins associate with grandular intermediate filaments in an ATP-dependent manner. J Biol Chem 1995; 270: 915–922.

    Google Scholar 

  44. Dice JF, Agarraberes F, Kirven-Brooks M et al. Heat shock 70-kDa proteins and ly-sosomal proteolysis. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Bi ology of Heat Shock Proteins and Molecu lar Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 137–151.

    Google Scholar 

  45. Craig EA, Baxter BK, Becker J et al. Cyto-solic hsp70s of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, pro teolysis, and regulation. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biol ogy of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 31–52.

    Google Scholar 

  46. Gething M-J, Blond-Elguindi S, Mori K, Sambrook JF. Structure, function, and regu lation of the endoplasmic reticulum chaper one, BiP. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 111–135.

    Google Scholar 

  47. Brodsky JL, Schekman R. Heat shock cognate proteins and polypeptide translocation across the endoplasmic reticulum membrane. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Labora tory Press, 1994: 85–109.

    Google Scholar 

  48. Bhattacharyya T, Karnezis AN, Muphy SP et al. Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 1995; 270: 1705–1710.

    Google Scholar 

  49. Langer T, Neupert W. Chaperoning mito chondrial biogenesis. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Bi ology of Heat Shock Proteins and Molecu lar Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 53–83.

    Google Scholar 

  50. Angelidis CE, Lazaridis I, Pagoulatos GN. Constitutive expression of heat-shock protein 70 in mammalian cells confers thermo-resistance. Eur J Biochem 1991; 199: 35–39.

    Google Scholar 

  51. Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: deg radation and reactivation of damaged pro teins. Annu Rev Genet 1993; 27: 437–496.

    Google Scholar 

  52. Pelham HR. Speculations on the functions of the major heat shock and glucose-regu lated proteins. Cell 1986; 46: 959–961.

    Google Scholar 

  53. Rothman JE. Polypeptide chain binding proteins: Catalysts of protein folding and related processes in cells. Cell 1989; 59: 591–601.

    Google Scholar 

  54. Hightower LE. Heat shock, stress proteins, chaperones and proteotoxicity. Cell 1991; 66: 191–197.

    Google Scholar 

  55. Laszlo A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif 1992; 25: 59–87.

    Google Scholar 

  56. Stege GJJ, Li L, Kampinga HH et al. Importance of the ATP-binding domain and nucleolar localization domain of HSP72 in the protection of nuclear proteins against heat-induced aggregation. Exp Cell Res 1994; 214: 279–284.

    Google Scholar 

  57. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88:1264–1272.

    Google Scholar 

  58. Agsteribbe E, Huckriede A, Veenhuis M et al. A fatal, systemic mitochondrial disease with decreased mitochondrial enzyme ac tivities, abnormal ultrastructure of the mi tochondria and deficiency of heat shock protein 60. Biochem Biophys Res Commun 1993; 193: 146–154.

    Google Scholar 

  59. Lewis VA, Hynes GM, Zheng D et al. T-complex polypeptide-l is a subunit of a heteromeric particle in the eukaryotic cyto-sol. Nature 1992; 358: 249–252.

    Google Scholar 

  60. Martin J, Horwich AL, Hartl FU. Preven tion of protein denaturation under heat stress by the chaperonin Hsp60. Science 1992; 258: 995–998.

    Google Scholar 

  61. Cheng MY, Hartl FU, Martin J et al. Mi tochondrial heat-chock protein hsp60 is es sential for assembly of proteins imported into yeast mitochondria. Nature 1989; 337: 620–625.

    Google Scholar 

  62. Arrigo AP, Landry J. Expression and func tion of the low-molecular weight heat shock proteins. In: Morimoto RI, Tissieres A and Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 335–373.

    Google Scholar 

  63. Sax CM, Piatigorsky J. Expression of the α-crystallin/small heat shock protein/molecu-lar chaperone genes in the lens and other tissues. In: Meister A, ed. Advances in Enzymology and related areas of molecular biology. New York, NY: Cornell Univer-sity Medical College New York, 1994: 69: 155–201.

    Google Scholar 

  64. Miron T, Vancompernolle K, Vanderkerckhove J et al. A 25-kD inhibi tor of actin polymerization is a low molecu lar mass heat shock protein. J Cell Biol 1991; 114: 255–261.

    Google Scholar 

  65. Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynam-ics and fluid phase pinocytosis by phospho-rylation of heat shock protein 27. J Biol Chem 1993; 268: 24210–24214.

    Google Scholar 

  66. Huot J, Lambert H, Lavoie JN et al. Char acterization of 45-kDa/54-kDa HSP27 ki-nase, a stress-sensitive kinase which may activate the phosphorylation-dependent pro tective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 1995; 227: 416–427.

    Google Scholar 

  67. Bennardini F, Wrzosek A, Chiesi M. αB-Crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 1992; 71:288–294.

    Google Scholar 

  68. Aoyama A, Frohli E, Schafer R, Klemenz R. αB-crystallin expression in mouse NIH 3T3 fibroblasts: Glucocorticoid responsive-ness and involvement in thermal protection. Mol Cell Biol 1993; 13: 1824–1835.

    Google Scholar 

  69. Chretien P, Landry J. Enhanced constitu tive expression of the 27-kDa heat shock proteins in heat-resistant variants from Chi nese hamster cells. J Cell Physiol 1988; 137: 157–166.

    Google Scholar 

  70. Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J. Induction of Chinese hamster HSP27 gene expression in mouse cells con-fers resistance to heat shock. HSP27 stabi-lization of the microfilament organization. J Biol Chem 1993; 268: 3420–3429.

    Google Scholar 

  71. Kampinga HH, Brunsting JF, Stege GJJ et al. Cells overexpressing Hsp27 show accel erated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 1994; 204: 1170–1177.

    Google Scholar 

  72. Melhen P, Preville X, Chareyron P et al. Constitutive expression of human hsp27, Drosophila hsp27, or human αB-crystallin confers resistance to TNF-and oxidative stress-induced cytotoxicity in stably trans-fected murine L929 fibroblasts. J Immunol 1995; 154: 363–374.

    Google Scholar 

  73. Oesterreich S, Weng C-N, Qiu M et al. The small heat shock protein hsp27 is cor related with growth and drug resistance in human breast cancer cell lines. Cancer Res 1993; 53: 4443–4448.

    Google Scholar 

  74. Jacob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem 1993; 268: 1517–1520.

    Google Scholar 

  75. Clechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994; 79: 13–21.

    Google Scholar 

  76. Parag HA, Raboy B, Kulka RG. Effect of heat shock on protein degradation in mam malian cells: Involvement of the ubiquitin system. EMBO J 1987; 6: 55–61.

    Google Scholar 

  77. Vile GF, Basu-Modak S, Waltner C, Tyrrell RM. Hemeoxygenase 1 mediates an adap tive response to oxidative stress in human skin fibroblasts. Proc Natl Acad Sci USA 1994; 91: 2607–2610.

    Google Scholar 

  78. Nakai A, Satoh M, Hirayoshi K, Nagata K. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol 1992; 117: 903–914.

    Google Scholar 

  79. Sykes K, Gething M-J, Sambrook J. Pro-line isomerases functions during heat shock. Proc Natl Acad Sci USA 1993; 90: 5853–5857.

    Google Scholar 

  80. Rassow J, Mohrs K, Koidl S, Barthelmess IB et al. Cyclophilin 20 is involved in mi tochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60. Mol Cell Biol 1995; 15: 2654–2662.

    Google Scholar 

  81. Ohtsuka K, Utsumi KR, Kaneda T, Hattori H. Effect of ATP on the release of hsp 70 and hsp 40 from the nucleus in heat-shocked HeLa cells. Exp Cell Res 1993; 209: 357–366.

    Google Scholar 

  82. Wu C, Clos J, Giorgi G, Haroun RI et al. Structure and regulation of heat shock tran scription factor. In: Morimoto RI, Tissieres A, and Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994: 395–416.

    Google Scholar 

  83. Morimoto RI, Jurivich DA, Kroeger PE et al. Regulation of heat shock gene transcrip tion by a family of heat shock factors. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Labora tory Press, 1994: 417–455.

    Google Scholar 

  84. Fernandes M, OBrien T, Lis JT. Structure and regulation of heat shock gene promoters. In: Morimoto RI, Tissieres A., Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Labora tory Press, 1994: 375–393.

    Google Scholar 

  85. Tsukiyama T, Becker PB, Wu C. ATP-de-pendent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 1994; 367: 525–532.

    Google Scholar 

  86. Sorger PK. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 1990; 62: 793–805.

    Google Scholar 

  87. Westwood JT, Wu C. Activation of Droso phila heat shock factor: Conformational change associated with a monomer-to-tri-mer transition. Mol Cell Biol 1993; 13: 3481–3486.

    Google Scholar 

  88. Larson JS, Schuetz TJ, Kingston RE. In vitro activation of purified human heat shock factor by heat. Biochemistry 1995; 34: 1902–1911.

    Google Scholar 

  89. Sarge K, Murphy SP, Morimoto RI. Activation of heat shock transcription by HSF1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993; 13: 1392–1407.

    Google Scholar 

  90. Liu RY, Kim D, Yang S-H, Li GC. Dual control of heat shock response: Involvement of a constitutive heat shock element-bind ing factor. Proc Natl Acad Sci USA 1993; 90: 3078–3082.

    Google Scholar 

  91. Craig EA, Gross CA. Is hsp70 the cellular thermometer? Trends Biochem Sci 1991; 16: 135–140.

    Google Scholar 

  92. Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity: meeting review. Cell 1991; 66: 191–197.

    Google Scholar 

  93. Abravaya K, Myers MP, Murphy SP, Morimoto RI. The human heat shock pro tein hsp70 interacts with HSF, the tran scription factor that regulates heat shock gene expression. Genes Dev 1992; 6: 1153–1164.

    Google Scholar 

  94. Baler R, Welch WJ,Voelmy R. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 1992; 117: 1151–1159.

    Google Scholar 

  95. Mosser DD, Duchaine J, Massie B. The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 1993; 13: 5427–5438.

    Google Scholar 

  96. Mifflin LC, Cohen RE. hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers. J Biol Chem 1994; 269: 15718–15723.

    Google Scholar 

  97. Pelham RHB. Speculations on the functions of the major heat shock and glucose-regu lated proteins. Cell 1986; 46: 959–961.

    Google Scholar 

  98. Rothman JE. Polypeptide chain binding proteins: catalysts of protein folding and re lated processes in cells. Cell 1989; 59: 591–602.

    Google Scholar 

  99. Edington BV, Whelan SA, Hightower LE. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J Cell Physiol 1989; 139: 219–228.

    Google Scholar 

  100. Anathan J, Goldberg AL, Voellmy R. Ab normal proteins serve as eukaryotic stress signals and trigger the acivation of heat shock genes. Science 1986; 232: 252–254.

    Google Scholar 

  101. Mifflin LC, Cohen RE. Characterization of denatured protein inducers of the heat shock (stress) response in Xenopus laevis oocytes. J Biol Chem 1994; 269: 15710–15717.

    Google Scholar 

  102. Ballinger DG, Pardue ML. The control of protein synthesis during heat shock in Droso phila cells involves altered polypeptide elon gation rates. Cell 1983; 33: 103–114.

    Google Scholar 

  103. Lindquist S. Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol 1980; 77: 463–469.

    Google Scholar 

  104. Theodorakis NG, Morimoto RI. Post-tran-scriptional regulation of HSP 70 expression in human cells: Effects of heat shock, inhi bition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 1987; 7: 4357–4368.

    Google Scholar 

  105. Klemenz R, Hultmark D, Gehring W. Se lective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO J 1985; 4: 2053–2060.

    Google Scholar 

  106. Duncan RF, Hershey JWB. Heat shock-induced translational alterations in HeLa cells. Initiation factor modifications and the inhibition of translation. J Biol Chem 1984; 259: 11882–11889.

    Google Scholar 

  107. Maroto FG, Sierra JM. Translational con trol in heat-shocked Drosophila embrios. J Biol Chem 1988; 263: 15720–15725.

    Google Scholar 

  108. Yost HJ, Petersen RB, Lindquist S. Post-transcriptional regulation of heat shock pro tein synthesis in Drosophila. In: Morimoto RI, Tissieres A, Georgopoulos C, eds. Stress Proteins in Biology and Medicine. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1990: 379–409.

    Google Scholar 

  109. Baler R, Zou J, Voellmy R. Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones 1996; 1:33–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kabakov, A.E., Gabai, V.L. (1997). Heat Shock Proteins and the Regulation of Heat Shock Gene Expression in Eukaryotes. In: Heat Shock Proteins and Cytoprotection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6007-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6007-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7752-8

  • Online ISBN: 978-1-4615-6007-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics