Skip to main content

Errors During Elongation Can Cause Translational Frameshifting

  • Chapter
Programmed Alternative Reading of the Genetic Code

Abstract

In general, the translational machinery more efficiently eliminates frameshift errors than any other sort. It is actually difficult to estimate the frequency of these errors because the system used to measure them probably introduces specific sites which stimulate frameshifting much more efficiently than at random sites in mRNAs, as discussed below. We can only guess what the rate of frameshifting is at any randomly chosen codon, but it is certainly much lower than the value 5 τ 10−5 quoted in chapter 2. What this means is that the process of translational elongation is fundamentally structured so that the ribosome may not alter its reading frame. This perhaps should have been expected. In the theoretical discussions of the coding problem Crick et al 8 proposed that genes were read into proteins by successive reading of three-base, nonoverlapping codons on an unpunctuated mRNA—specifically stating that “(t)here are not special ‘commas’ to show how to select the right triplets.” The concept of an unpunctuated code explained the behavior of frameshift mutations. Once the frame were disrupted by the insertion or deletion of a base, translation continued in that frame reading a series of codons not present in the normal gene until encountering a nonsense codon in that frame and terminating translation.26 If, as Crick et al contended, the identity of the protein produced depended entirely on the selection of the site of initiation, with slavish, mechanical reading of successive codons following, then the translational machinery must include on a very fundamental level a mechanism for ensuring this repetitive reading of adjacent triplets. It follows that the occurrence of these errors might be expected to be very low since the structure of the ribosome evolved to preclude them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins J, Gesteland R. Discontinuous triplet decoding with, or without, re-pairing by peptidyl-tRNA. In: Söll D, RajBhandary U, eds. tRNA: Structure, Biosynthesis and Function. Washington, D.C.: American Society for Microbiology, 1995.

    Google Scholar 

  2. Atkins J, Gesteland R, Reid B et al. Normal tRNAs promote ribosomal frameshifting. Cell 1979; 18:1119–1131.

    Article  PubMed  CAS  Google Scholar 

  3. Atkins JF, Elseviers D, Gorini L. Low activity of β-galactosidase in frameshift mutants of Escherichia coli. Proc Natl Acad Sci USA 1972; 69:1192–1195.

    Article  PubMed  CAS  Google Scholar 

  4. Ayer D, Yarus M. The context effect does not require a fourth base pair. Science 1986; 231:393–395.

    Article  PubMed  CAS  Google Scholar 

  5. Beremand MN, Blumenthal T. Overlapping genes in RNA phage: a new protein implicated in lysis. Cell 1979; 18:257–266.

    Article  PubMed  CAS  Google Scholar 

  6. Björk G. Biosynthesis and function of modified nucleosides. In: Söll D, RajBhandary U, eds. tRNA: Structure, Biosynthesis and Function. Washington, DC: ASM Press, 1995:165–205.

    Google Scholar 

  7. Bruce AG, Atkins JF, Gesteland RF. tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding. Proc Natl Acad Sci USA 1986; 83:5062–5066.

    Article  PubMed  CAS  Google Scholar 

  8. Crick F, Barnett L, Brenner S et al. General nature of the genetic code for proteins. Nature 1961; 192:1227–1232.

    Article  PubMed  CAS  Google Scholar 

  9. Dayhuff T, Atkins J, Gesteland R. Characterization of ribosomal frameshift events by protein sequence analysis. J Biol Chem 1986; 261:7491–7500.

    PubMed  CAS  Google Scholar 

  10. Edelmann P, Gallant J. Mistranslation in E. coli. Cell 1977; 10:131–7.

    CAS  Google Scholar 

  11. Gallant J, Foley D. On the causes and prevention of mistranslation. In: Chambliss G, Craven G, Davies R, Davis J, Kahan J, Nomura M, eds. Ribosomes: Structure, Function and Genetics. Baltimore: University Park Press, 1980:615–638.

    Google Scholar 

  12. Gallant JA, Lindsley D. Leftward ribosome frameshifting at a hungry codon. J Mol Biol 1992; 223:31–40.

    Article  PubMed  CAS  Google Scholar 

  13. Inokuchi H, Yamao F. Structure and expression of prokaryotic tRNA genes. In: Söll D, RajBhandary U, eds. tRNA: Structure, Biosynthesis and Function. Washington, DC: ASM Press, 1995:17–30.

    Google Scholar 

  14. Kolor K, Lindsley D, Gallant JA. On the role of the P-site in leftward ribosome frameshifting at a hungry codon. J Mol Biol 1993; 230:1–5.

    Article  PubMed  CAS  Google Scholar 

  15. Kurland C, Gallant J. The secret life of the ribosome. In: Kirkwood T, Rosenberger R, Galas D, eds. Accuracy in Molecular Processes. London: Chapman and Hall, 1986: 127–157.

    Chapter  Google Scholar 

  16. Kurland CG. Translational accuracy and the fitness of bacteria. Annu Rev Genet 1992; 26:29–50.

    Article  PubMed  CAS  Google Scholar 

  17. Lindsley D, Gallant JA. On the directional specificity of ribosome frameshifting at a hungry codon. Proc Natl Acad Sci USA 1993; 90:5469–5473.

    Article  PubMed  CAS  Google Scholar 

  18. Loftfield RB, Vanderjagt D. The frequency of errors in protein biosynthesis. Biochem J 1972; 128:1353–6.

    PubMed  CAS  Google Scholar 

  19. Lustig F, Elias P, Axberg T et al. Codon reading and translational error: reading of the glutamine and lysine codons during protein synthesis in vitro. J Biol Chem 1981; 256:2635–2643.

    PubMed  CAS  Google Scholar 

  20. Pande S, Vimaladithan A, Zhao H et al. Pulling the ribosome out of frame +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Mol Cell Biol 1995; 15:298–304.

    PubMed  CAS  Google Scholar 

  21. Peter K, Lindsley D, Peng L et al. Context rules of rightward overlapping reading. New Biol 1992; 4:520–526.

    PubMed  CAS  Google Scholar 

  22. Quigley GJ, Rich A. Structural domains of transfer RNA molecules. Science 1976; 194:796–806.

    Article  PubMed  CAS  Google Scholar 

  23. Riddle D, Carbon J. Frameshift suppression: a nucleotide addition in the anticodon of a glycine tRNA. Nature New Biol 1973; 242:230–234.

    PubMed  CAS  Google Scholar 

  24. Sekiya T, Takeishi K, Ukita T. Specificity of yeast glutamic acid transfer RNA for codon recognition. Biochim Biophys Acta 1969; 182:411–426.

    Article  PubMed  CAS  Google Scholar 

  25. Steinberg S, Misch A, Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1993; 21:3011–3015.

    Article  PubMed  CAS  Google Scholar 

  26. Streisinger G, Okada Y, Emrich J et al. Frameshift mutations and the genetic code. Cold Spring Harbor Symp Quant Biol 1966; 31:77–84.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss R, Gallant J. Mechanism of ribosome frameshifting during translation of the genetic code. Nature 1983; 302:389–393.

    Article  PubMed  CAS  Google Scholar 

  28. Weiss R, Gallant J. Frameshift suppression in aminoacyl-tRNA limited cells. Genetics 1986; 112:727–739.

    PubMed  CAS  Google Scholar 

  29. Weiss RB, Lindsley D, Falahee B et al. On the mechanism of ribosomal frameshifting at hungry codons. J Mol Biol 1988; 203:403–410.

    Article  PubMed  CAS  Google Scholar 

  30. Yokoyama S, Watanabe T, Murao K et al. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the codon. Proc Natl Acad Sci USA 1985; 82:4905–4909.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farabaugh, P.J. (1997). Errors During Elongation Can Cause Translational Frameshifting. In: Programmed Alternative Reading of the Genetic Code. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5999-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5999-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7748-1

  • Online ISBN: 978-1-4615-5999-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics