Skip to main content

Metallothionein-like Genes and Phytochelatins in Higher Plants

  • Chapter
Metal Ions in Gene Regulation

Abstract

The mineral composition of soils is highly variable both spatially and temporally (for example, coincident with changes in soil moisture content). For plants to grow and reproduce they must adapt to at least some variation in this component of the environment. Adaptive mechanisms include regulating the uptake of nutrients from the soil, typically by transport activities in roots, and these may be complemented by other intracellular mechanisms that regulate availability and prevent toxicity of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buchanan-Wollaston, V. 1994. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus-Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol 105:839–846.

    Article  CAS  PubMed  Google Scholar 

  • Cano-Gauci, D. F., andB. Sarkar. 1996. Reversible zinc exchange between metallothionein and the estrogen receptor zinc finger. FEBS Lett. 386:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Chen J., and P. B. Goldsbrough. 1994. Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239.

    CAS  PubMed  Google Scholar 

  • Chen, J., J. Zhou, and P. B. Goldsbrough. 1997. Characterization of phytochelatin synthase from tomato. Physiol Plant,(in press)

    Google Scholar 

  • Chevalier, C., E. Bourgeois, A. Pradet, and P. Raymond. 1995. Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea maysL.) root tips. Plant Mol. Biol. 28:473–485.

    Article  CAS  PubMed  Google Scholar 

  • Coupe, S. A., J. E. Taylor, and J. A. Roberts. 1995. Characterisation of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus nigraL. leaflets. Planta 197:442–447.

    Article  CAS  PubMed  Google Scholar 

  • Dameron C. T., R. N. Reese, R. K. Mehra, A. R. Kortan, P. J. Carroll, M. L. Steigerwald, L. E. Brus, and D. R. Winge. 1989. Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597.

    Article  CAS  Google Scholar 

  • de Framond, A. J. 1991. A metallothionein-like gene from maize (Zea mays). . FEBS Lett.. 290:103–106.

    Article  PubMed  Google Scholar 

  • de Knecht, J. A., M. Van Dillen, P. L. M. Koevoets, H. Schat, J.A.C. Verkleij, and W.H.O. Ernst. 1994. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris: Chain length distribution and sulfide incorporation. Plant Physiol. 104:255–261.

    PubMed  Google Scholar 

  • Delhaize, E., P. J. Jackson, L. D. Lujan, and N. J. Robinson. 1989. Poly(γ-glutamylcysteinyl)glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiol. 89:700–706.

    Article  CAS  PubMed  Google Scholar 

  • Delhaize, M. 1996. A metal-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 111:849–855.

    Article  CAS  PubMed  Google Scholar 

  • de Miranda, J. R., M. A. Thomas, D. A. Thurman, and A. B. Tomsett. 1990. Metallothionein genes from the flowering plant Mimulus guttatus. FEBS Lett. 260:277–280.

    Article  Google Scholar 

  • Eide, D., M. Broderius, J. Fett, and M. L. Guerinot. 1996. A novel iron-regulated metal transporter from plants identified by functional complementation in yeast. Proc. Natl Acad. Sci U.SA. 93:5624–5628.

    Article  CAS  Google Scholar 

  • Evans, I. M., L. N. Gatehouse, J. A. Gatehouse, N. J. Robinson, and R.R.D. Croy. 1990. A gene from pea (Pisum sativumL.) with homology to metallothionein genes. FEBS Lett.. 262:29–32.

    Article  CAS  PubMed  Google Scholar 

  • Evans K. M., J. A. Gatehouse, W. P. Lindsay, J. Shi, A. M. Tommey, and N. J. Robinson. 1992. Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMT A function. Plant Mol. Biol. 20:1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Foley, R. C, and K. B. Singh. 1994. Isolation of a Vicia faba metallothionein-like gene: Expression in foliar trichomes. Plant Mol. Biol. 26:435–444.

    Article  CAS  PubMed  Google Scholar 

  • Fordham-Skelton, A. P., C. Lilley, P. E. Urwin, and N. J. Robinson. 1997. GUS expression in Arabidopsis directed by 5’ regions of a pea metallothionein-like gene, PsMT A . Plant Mol. Biol.. 34:659–668.

    Article  CAS  PubMed  Google Scholar 

  • Galiazzo, F., M. R. Ciriolo, M. T. Carri, P. Civitareale, L. Marcocci, F. Marmocchi, and G. Rotilio. 1991. Activation and induction by copper of Cu/Zn superoxide dismutase in Saccharomyces cerevisiae. Eur. J. Biochem. 196:545–549.

    Article  CAS  PubMed  Google Scholar 

  • Gekeler, W., E. Grill, E.-L. Winnacker, and M. H. Zenk. 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Zeit. Naturfor. Sec. C Biosci. 44:361–369.

    CAS  Google Scholar 

  • Glaeser, H., A. Coblenz, R. Kruczek, I. Ruttke, A. Ebert-Jung, and K. Wolf. 1991. Glutathione metabolism and heavy metal detoxification in Schizosaccharomyces pombe. Current Genet. 19:207–213.

    Article  CAS  Google Scholar 

  • Grill, E., S. Loffler, E.-L. Winnacker, and M. H. Zenk. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86:6838–6842.

    Article  CAS  PubMed  Google Scholar 

  • Grill, E., J. Thumann, E.-L. Winnacker, and M. H. Zenk. 1988. Induction of heavy-metal binding phytochelatins by innoculation of cell cultures in standard media. Plant Cell Rep.. 7:375–378.

    CAS  Google Scholar 

  • Grill, E., E.-L. Winnacker, and M. H. Zenk. 1985. Phytochelatins, the principal heavy-metal complexing peptides of higher plants. Science 230:674–676.

    Article  CAS  PubMed  Google Scholar 

  • Grill, E., E.-L. Winnacker, and M. H. Zenk. 1986. Homo-phytochelatins are heavy-metal-binding peptides of homo-glutathione containing Fabales. FEBS Lett. 205:47–50.

    Article  CAS  Google Scholar 

  • Grill, E., E.-L. Winnacker, and M. H. Zenk. 1987. Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. USA 84:439–443.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S. C., andP. B. Goldsbrough. 1990. Phytochelatin accumulation and stress tolerance in tomato cells exposed to cadmium. Plant Cell Rep. 9:466–469.

    CAS  Google Scholar 

  • Gupta, S. C, and P. B. Goldsbrough. 1991. Phytochelatin accumulation and tolerance in selected tomato cell lines. Plant Physiol. 97:3306–3312.

    Article  Google Scholar 

  • Hayashi Y., C. W. Nakagawa, N. Mutoh, M. Isobe, and T. Goto. 1991. Two pathways in the biosynthesis of cadystins (γ-EC)nG in the cell-free system of the fission yeast. Biochem. Cell Biol. 69:115–121.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., C. W. Nakagawa, D. Uyakul, K. Imai, M. Isobe, and T. Goto. 1988. The change of cadystin components in Cd-binding peptides from the fission yeast during their induction by cadmium. Biochem. Cell Biol. 66:288–295.

    Article  CAS  Google Scholar 

  • Hofmann, T., D.I.C. Kells, and B. G. Lane. 1984. Partial amino acid sequence of the wheat germ Ec protein. Comparison with another protein very rich in half-cystine and glycine: wheat germ agglutinin. Can. J. Biochem. Cell Biol. 62:908–913.

    Article  CAS  Google Scholar 

  • Howden, R., C. R. Andersen, P. B. Goldsbrough, and C. S. Cobbett. 1995 b. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107: 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  • Howden, R., and C. S. Cobbett. 1992. Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiol. 100:100–107.

    Article  CAS  PubMed  Google Scholar 

  • Howden, R., P. B. Goldsbrough, C. R. Andersen, and C. S. Cobbett. 1995 a. Cadmium-sensitive, cadl, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107:1059–1066.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, H.-M., W.-K. Liu, and P. C. Huang. 1995. A novel stress-inducible metallothionein-like gene from rice. Plant Mol. Biol. 28:381–389.

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki, H., J. M. Maxson, and W. R. Woodson. 1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathiones-transferase (GST1) gene. Proc. Natl. Acad. Sci. U.S.A. 91:8925–8929.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, P. J., C. J. Unkefer, J. A. Doolen, K. Watt, and N. J. Robinson. 1987. Poly(γ-glutamylcysteinyl)glycine: Its role in cadmium resistance in plant cells. Proc. Natl. Acad. Sci. U.S.A. 84:6619–662

    Article  CAS  PubMed  Google Scholar 

  • Juang, R.-H., K. F. MacCue, and D. W. Ow. 1993. Two purine biosynthetic enzymes that are required for cadmium tolerance in Schizosaccharomyces pombe utilize cysteine sulfinate in vitro. Arch. Biochem. Biophys. 304:392–401.

    Article  CAS  PubMed  Google Scholar 

  • Kägi, J.H.R. 1991. Overview of metallothionein. Methods Enzymol. 205:613–626.

    Article  PubMed  Google Scholar 

  • Kägi, J.H.R., and A. Schaffer. 1988. Biochemistry of metallothionein. Biochem. 27:8510–8515.

    Google Scholar 

  • Kampfenkel, K., S. Kushnir, E. Babiychuk, D. Inze, and M. Van Montagu. 1995. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J. Biol. Chem. 270:28479–28486.

    Article  CAS  PubMed  Google Scholar 

  • Kawashima, I., Y. Inokuchi, M. Chino, M. Kimura, and N. Shimizu. 1991. Isolation of a gene for a metallothionein-like protein from soybean. Plant Cell Physiol. 32:913–916.

    CAS  Google Scholar 

  • Kawashima, I., T. D. Kennedy, M. Chino, and B. G. Lane. 1992. Wheat Ec metallothionein genes. Eur. J. Biochem. 209:971–976.

    Article  CAS  PubMed  Google Scholar 

  • Kille, P., D. R. Winge, J. L. Harwood, and J. Kay. 1991. A plant metallothionein produced in E. coll FEBS Lett.. 295:171–175.

    Article  CAS  Google Scholar 

  • Klapheck, S. 1988. Homoglutathione: Isolation, quantification and occurrence in legumes. Physiol Plant. 74:727–732.

    Article  CAS  Google Scholar 

  • Klapheck, S., W. Fliegner, and I. Zimmer. 1994. Hydroxymethyl-phytochelatins [(γ-glutamylcysteine)n-serine] are metal induced peptides of the Poaceae. Plant Physiol. 104:1325–1332.

    Article  CAS  PubMed  Google Scholar 

  • Klapheck, S., S. Schlunz, and L. Bergmann. 1995. Synthesis of phytochelatins and homophytochelatins in Pisum sativumL. Plant Physiol. 107:515–521.

    CAS  Google Scholar 

  • Kneer, R., T. M. Kutchan, A. Hochberger, and M. H. Zenk. 1992. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch. Microbiol. 157:305–310.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, N., M. Isobe, K. Imai, and T. Goto. 1983. Structure of cadystin, the unit peptide of cadmium-binding peptides induced in the fission yeast Schizosaccharomyces pombe. Tetrahed. Lett. 24:925–928.

    Article  CAS  Google Scholar 

  • Lane, B., R. Kajioka, and T. Kennedy. 1987. The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol.. 65:1001–1005.

    Article  CAS  Google Scholar 

  • Ledger, S. E., and R. C. Gardner. 1994. Cloning and expression of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa). Plant Mol Biol.. 25:877–886.

    Article  CAS  PubMed  Google Scholar 

  • Loffler, S., A. Hochberger, E. Grill, E.-L. Winnacker, and M. H. Zenk. 1989. Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett.. 258:42–46.

    Article  Google Scholar 

  • Maitani, T., H. Kubota, K. Sato, and T. Yamada. 1996. The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol. 110:1145–1150.

    CAS  PubMed  Google Scholar 

  • May, M. J., and C. J. Leaver. 1994. Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc. Natl. Acad. Sci. U.S.A. 91:10059–1006

    Article  CAS  PubMed  Google Scholar 

  • Mehra, R. K., V. R. Kodati, and R. Abdullah. 1995. Chain-length-dependent Pb(II)-coordination in phytochelatins. Biochem. Biophys. Res. Comm.. 215:730–736.

    Article  CAS  PubMed  Google Scholar 

  • Mehra R. K., J. Miclat, V. R. Kodati, R. Abdullah, T. C. Hunter, and P. Mulchandani. 1996 a. Optical spectroscopic and reverse phase HPLC analyses of Hg(II) binding to phytochelatins. Biochem. J. 314:73–82.

    CAS  PubMed  Google Scholar 

  • Mehra, R. K., P. Mulchandani, and T. C. Hunter. 1994. Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochem. Biophys. Res. Comm.. 200:1193–1200.

    CAS  Google Scholar 

  • Mehra, R. K., E. B. Tarbet, W. R. Gray, and D. R. Winge. 1988. Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata. Proc. Natl. Acad. Sci. U.S.A. 85:8815–88

    Article  CAS  PubMed  Google Scholar 

  • Mehra, R. K., K. Tran, G. W. Scott, P. Mulchandani, and S. S. Sani. 1996 b. Ag(I)-binding to phytochelatins. J. Inorg. Biochem. 61:125–142.

    Article  CAS  PubMed  Google Scholar 

  • Mendum, M. L., S. C. Gupta, and P. B. Goldsbrough. 1990. Effect of glutathione on phytochelatin synthesis in tomato cells. Plant Physiol. 93:484–488.

    Article  CAS  PubMed  Google Scholar 

  • Mett, V. L., L. P. Lochhead, and H. S. Reynolds. 1993. Copper-controllable gene expression system for whole plants. Proc. Natl. Acad. Sci. U.S.A. 90:4567–457

    Article  CAS  PubMed  Google Scholar 

  • Meuwly, P., P. Thibault, A. L. Schwan, and W. E. Rauser. 1995. Three families of thiol peptides are induced by cadmium in maize. Plant J. 7:391–400.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, A., and L. Taiz. 1995 a. A new vertical mesh transfer technique for metal tolerance studies in Arabidopsis. Plant Physiol. 108:29–38.

    CAS  PubMed  Google Scholar 

  • Murphy, A., andL. Taiz. 1995 b. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol. 109:945–954.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, A., J. Zhou, P. B. Goldsbrough, and L. Taiz. 1997. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol. 113:1293–1301.

    Article  CAS  PubMed  Google Scholar 

  • Mutoh, N., andY. Hayashi. 1988. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem. Biophys. Res. Comm. 151:32–39.

    Article  CAS  PubMed  Google Scholar 

  • Mutoh, N., C. W. Nakagawa, S. Ando, K. Tanabe, and Y. Hayashi. 1991. Cloning and sequencing of the gene encoding the large subunit of glutathione synthetase of Schizosaccharomyces pombe. Biochem. Biophys. Res. Comm.. 181:430–436.

    Article  CAS  PubMed  Google Scholar 

  • Mutoh, N., C. W. Nakagawa, and Y. Hayashi. 1995. Molecular cloning and nucleotide sequencing of the γ-glutamylcysteine synthetase gene of the fission yeast Schizosaccharomyces pombe. J. Biochem. 117:283–288.

    Article  CAS  PubMed  Google Scholar 

  • Okumura, N., N.-K. Nishizawa, Y. Umehara, and S. Mori. 1991. An iron deficiencyspecific cDNA from barley roots having two homologous cysteine-rich MT domains. Plant Mol. Biol.. 17:531–533.

    Article  CAS  PubMed  Google Scholar 

  • Okumura, N., N.-K. Nishizawa, Y. Umehara, T. Ohata, and S. Mori. 1992. Iron deficiency specific cDNA (Ids1) with two homologous cysteine rich MT domains from the roots of barley. J. Plant Nutr.. 15:2157–2172.

    Article  CAS  Google Scholar 

  • Ortiz, D. F., L. Kreppel, D. M. Speiser, G. Scheel, G. McDonald, and D. W. Ow. 1992. Heavy-metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11:3491–3499.

    CAS  PubMed  Google Scholar 

  • Ortiz, D. F., T. Ruscitti, K. F. McCue, and D. W. Ow. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 270:4721–4728.

    Article  CAS  PubMed  Google Scholar 

  • Reese, R. N., and G. J. Wagner. 1987. Effects of buthionine sulfoximine on Cd-binding peptide levels in suspension-cultured tobacco cells treated with Cd, Zn, or Cu. Plant Physiol. 84:574–577.

    Article  CAS  PubMed  Google Scholar 

  • Reese, R. N., C. A. White, and D. R. Winge. 1992. Cadmium sulfide crystallites in Cd-(γ-EC)nG peptide complexes from tomato. Plant Physiol. 98:225–229.

    Article  CAS  PubMed  Google Scholar 

  • Reese, R. N., andD. R. Winge. 1988. Sulfide stabilization of the cadmium-γ-glutamyl peptide complex of Schizosaccharomyces pombe. J. Biol. Chem. 263:12832–12835.

    CAS  PubMed  Google Scholar 

  • Rennenberg, H., andC. Brunhold. 1994. Significance of glutathione metabolism in plants under stress. Prog. Bot.. 55:142–156.

    Article  CAS  Google Scholar 

  • Robinson, N. J., I. M. Evans, J. Mulcrone, J. Bryden, and A. M. Tommey. 1992. Genes with similarity to metallothionein genes and copper, zinc ligands in Pisum sativum L. Plant Soil 146:291–298.

    Article  CAS  Google Scholar 

  • Robinson, N. J., A. M. Tommey, C. Kuske, and P. J. Jackson. 1993. Plant metallothioneins. Biochem. J.. 295:1–10.

    CAS  PubMed  Google Scholar 

  • Robinson, N. J., J. R. Wilson, J. S. Turner, A. P. Fordham-Skelton, and Q. J. Groom. 1997. Metal gene interaction in roots: Metallothionein-like genes and iron reductases. In Plant Roots-From Cells to Systems,eds. H. M. Anderson et al., pp. 117–130. Kluwer Academic Publishers, The Netherlands.

    Chapter  Google Scholar 

  • Robinson, N. J., J. R. Wilson, and J. S. Turner. 1996. Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein deficient Syne-chococcus PCC 7942: Putative role for MT2 in Zn2+-metabolism. Plant Mol. Biol.. 30:1169–1179.

    Article  CAS  PubMed  Google Scholar 

  • Romera, F. J., R. M. Welch, W. A. Norvell, and S. C. Schaefer. 1996 a. Iron requirement for and effects of promoters and inhibitors of ethylene action on stimulation of Fe(III)-chelate reductase in roots of strategy I species. Bio Metals 9:45–50.

    CAS  Google Scholar 

  • Romera, F. J., R. M. Welch, W. A. Norvell, S. C. Schaefer and L. V. Kochian. 1996 b. Ethylene involvement in the over-expression of Fe(III)-chelate reductase by roots of E107 pea [Pisum sativum L. (brz, brz)] and chloronerva tomato (Lycopersicon esculentum L.) mutant genotypes. Bio Metals 9:38–44.

    CAS  Google Scholar 

  • Ruegsegger, A., and C. Brunold. 1992. Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol. 99:428–433.

    Article  CAS  PubMed  Google Scholar 

  • Salt, D. E., and W. E. Rauser. 1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107:1293–1301.

    CAS  PubMed  Google Scholar 

  • Salt, D. E., and G. J. Wagner. 1993. Cadmium transport across tonoplast of vesicles from oat roots: Evidence for a Cd2(+)/H(+) antiport activity. J. Biol. Chem. 268:12297–12302.

    CAS  PubMed  Google Scholar 

  • Scheller, H. V., B. Huang, E. Hatch, and P. B. Goldsbrough. 1987. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol. 85:1031–1035.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., W. P. Lindsay, J. W. Huckle, A. P. Morby, and N. J. Robinson. 1992. Cyanobacterial metallothionein expressed in Escherichia coli FEBS Lett. 303:159–163.

    Article  CAS  PubMed  Google Scholar 

  • Snowden, K. C., and R. C. Gardner. 1993. Five genes induced by aluminum in wheat (Triticum aestivumL.) roots. Plant Physiol.. 103:855–861.

    Article  CAS  PubMed  Google Scholar 

  • Snowden, K. C., K. D. Richards, and R. C. Gardner. 1995. Aluminum-induced genes: Induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiol. 107:341–348.

    CAS  PubMed  Google Scholar 

  • Speiser, D. M., S. L. Abrahamson, G. Banuelos, and D. W. Ow. 1992 a. Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiol 99:817–821.

    Article  CAS  PubMed  Google Scholar 

  • Speiser, D. M., D. F. Ortiz, L. Kreppel, and D. W. Ow. 1992 b. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol. Cell. Biol. 12:5301–5310.

    CAS  Google Scholar 

  • Steffens, J. C. 1990. The heavy metal-binding peptides of plants. Ann. Rev. Plant Physiol Plant Mol Biol. 41:533–575.

    Article  Google Scholar 

  • Steffens, J. C, D. F. Hunt, and B. G. Williams. 1986. Accumulation of non-protein metalbinding polypeptides(γ-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J. Biol. Chem.. 261:13879–13882.

    CAS  PubMed  Google Scholar 

  • Steffens, J. C, and B. G. Williams. 1989. Increased activity of γ-glutamylcysteine synthetase in DMSO-permeabilized cadmium-resistant plant cells. In Metal Ion Homeostasis: Molecular Biology and Biochemistry, ed. D. H. Hamer and D. R. Winge, pp. 359–366. Alan R. Liss, Inc, New York.

    Google Scholar 

  • Strain, J., andV. C. Culotta. 1996. Copper ions and the regulation of Saccharomyces cerevisiae metallothionein genes under aerobic and anaerobic conditions. Mol Gen. Genet.. 251:139–145.

    CAS  PubMed  Google Scholar 

  • Thompson J. E., R. L. Legge, and R. F. Barber. 1987. The role of free radicals in wounding and senescence. New Phytol. 105:317–344.

    Article  CAS  Google Scholar 

  • Tommey A. M., J. Shi, W. P. Lindsay, P. E. Urwin, and N. J. Robinson. 1991. Expression of the pea gene PsMT A in E. coli. FEBS Lett.. 292:48–52.

    Article  CAS  Google Scholar 

  • Van Vliet, C., C. R. Andersen, and C. S. Cobbett. 1995. Copper-sensitive mutant of Arabidopsis thaliana. Plant Physiol. 109:871–878.

    Article  PubMed  Google Scholar 

  • Vogeli-Lange, R., and G. J. Wagner. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol. 92:1086–1093.

    Article  CAS  PubMed  Google Scholar 

  • Vogeli-Lange, R., and G. J. Wagner. 1996. Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci.. 114:11–18.

    Article  Google Scholar 

  • Wagner, G. J. 1984. Characterization of a cadmium-binding complex of cabbage leaves. Plant Physiol. 76:797–805.

    Article  CAS  PubMed  Google Scholar 

  • Welch, R. M., W. A. Norvell, S. C. Schaefer, J. E. Shaff, and L. V. Kochian. 1993. Induction of iron (III) and copper (II) reduction in pea (Pisum sativumL.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? Planta 190:555–561.

    Article  CAS  Google Scholar 

  • White, C. N., and C. J. Rivin. 1995. Characterisation and expression of a cDNA encoding a seed-specific metallothionein in maize. Plant Physiol 108:831–832.

    Article  CAS  PubMed  Google Scholar 

  • Yi, Y., and M. L. Guerinot. 1996. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 10:835–844.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, J., R. Heuchel, W. Schaffner, and J.H.R. Kägi. 1991 a. Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Spl. FEES Lett.. 279:310–312.

    Article  CAS  Google Scholar 

  • Zeng, J., B. L. Vallee, and J.H.R. Kägi. 1991 b. Zinc transfer from transcription factor-IIIA to thionein clusters. Proc. Natl Acad. Sci. U.S.A. 88:9984–998

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., and P. B. Goldsbrough. 1994. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884.

    CAS  PubMed  Google Scholar 

  • Zhou, J., and P. B. Goldsbrough. 1995. Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet.. 248:318–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skelton, A.P.F., Robinson, N.J., Goldsbrough, P.B. (1998). Metallothionein-like Genes and Phytochelatins in Higher Plants. In: Silver, S., Walden, W. (eds) Metal Ions in Gene Regulation. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5993-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5993-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7745-0

  • Online ISBN: 978-1-4615-5993-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics