Skip to main content

The Molecular Biology of Iron and Zinc Uptake in Saccharomyces cerevisiae

  • Chapter
Metal Ions in Gene Regulation

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Metals such as iron and zinc are essential nutrients because of the critical roles they play in a large number of biochemical processes. Iron, for example, readily donates and accepts electrons from substrates and can display a broad range of oxidation-reduction potentials depending on the ligand environment surrounding the metal cation. Because of this unique property, iron is an important cofactor of several metalloenzymes such as ribonucleotide reductase and aconitase. Moreover, iron is required for heme biosynthesis and the activity of many hemecontaining enzymes such as catalase, the cytochromes of the electron transport chain, and hemoproteins involved in oxygen transport. Zinc, in contrast, has only one biologically relevant valence but is essential because it is an integral cofactor of over 300 different metalloenzymes and is indispensable to their catalytic activity and/or structural stability. Examples include alkaline phosphatase, alcohol dehydrogenase, aspartate transcarbamoylase, carbonic anhydrase, and several proteases. Zinc is also an important component of enzymes involved in transcription and of accessory transcription factors, the zinc-finger proteins, that regulate gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ander, P., and K.-E. Eriksson. 1976. The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Arch. Microbiol. 109:1–8.

    Article  CAS  Google Scholar 

  • Anderson, G. J., A. Dancis, D. G. Roman, and R. D. Klausner. 1994. Ferric iron reduction and iron uptake in eucaryotes: Studies with the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Adv. Exp. Med. Biol.. 356:81–89.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, G. J., E. Lesuisse, A. Dancis, D. G. Roman, P. Labbe, and R. D. Klausner. 1992. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. J. Inorg. Biochem.. 47:249–255.

    Article  PubMed  CAS  Google Scholar 

  • Askwith, C., D. Eide, A. Van Ho, P. S. Bernard, L. Li, S. Davis-Kaplan, D. M. Sipe, and J. Kaplan. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410.

    Article  PubMed  CAS  Google Scholar 

  • Askwith, C. C., D. De Silva, and J. Kaplan. 1996. Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol. Microbiol. 20:27–34.

    Article  CAS  Google Scholar 

  • Bode, H. P., M. Dumschat, S. Garotti, and G. F. Fuhrmann. 1995. Iron sequestration by the yeast vacuole. Eur. J. Biochem. 228:337–342.

    Article  PubMed  CAS  Google Scholar 

  • Braun, V., R. Gross, W. Koster, and L. Zimmermann. 1983. Plasmid and chromosomal mutants in the iron (III)-aerobactin transport system of Escherichia coli.Use of streptonigrin for selection. Mol. Gen. Genet.. 192:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Bull, P. C, G. R. Thomas, J. M. Rommens, J. R. Forbes, and D. W. Cox. 1993. The Wilson’s disease gene is a putative copper transporting P-type ATPase similar to the Menkes’ gene. Nature Genet. 5:327–336.

    Article  PubMed  CAS  Google Scholar 

  • Butt, V. S. 1980. Direct oxidases and related enzymes, p. 81–123. In The Biochemistry of Plants, ed. D. D. Davies, Academic Press, New York

    Google Scholar 

  • Cha, J., and S. A. Cooksey. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 88:8915–8919.

    Article  PubMed  CAS  Google Scholar 

  • Chelly, J., Z. Turner, T. Tonnesen, A. Petterson, Y. Ishikawa-Brush, N. Tommerup, N. Horn, and A. P. Monaco. 1993. Isolation of a candidate gene for Menkes’ disease that encodes a potential heavy metal binding protein. Nature Genet.. 3:14–19.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. S., Y. Chai, B. E. Britigan, W. McKenna, J. Adams, T. Svendsen, K. Bean, D. J. Hasssett, and P. F. Sparling. 1987. Role of extracellular iron in the action of the quinone antibiotic streptonigrin: Mechanisms of killing and resistance of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 31:1507–1513.

    Article  PubMed  CAS  Google Scholar 

  • Conklin, D. S., M. R. Culbertson, and C. Kung. 1994. Interactions between gene products involved in divalent cation transport in Saccharomyces cerevisiae. Mol. Gen. Genet. 244:303–311.

    CAS  Google Scholar 

  • Conklin, D. S., J. A. McMaster, M. R. Culbertson, and C. Kung. 1992. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:3678–3688.

    CAS  Google Scholar 

  • Crane, F. L., H. Roberts, A. W. Linnane, and H. Low. 1982. Transmembrane ferricyanide reduction by cell of the yeast Saccharomyces cerevisiae. J. Bioenerg. Biomemb. 14:191–2

    Article  CAS  Google Scholar 

  • Dancis, A., R. D. Klausner, A. G. Hinnebusch, and J. G. Barriocanal. 1990. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol. Cell Biol. 10:2294–2301.

    CAS  Google Scholar 

  • Dancis, A., D. G. Roman, G. J. Anderson, A. G. Hinnebusch, and R. D. Klausner. 1992. Ferric reductase of Saccharomyces cerevisiae:Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl Acad. Sci. U.S.A. 89:3869–387

    Article  PubMed  CAS  Google Scholar 

  • Dancis, A., D. S. Yuan, D. Haile, C. Askwith, D. Eide, C. Moehle, J. Kaplan, and R. D. Klausner. 1994. Molecular characterization of a copper transport protein in S. cerevisiae:An unexpected role for copper in iron transport. Cell 76:393–402.

    Article  PubMed  CAS  Google Scholar 

  • De Silva, D. M., C. C. Askwith, D. Eide, and J. Kaplan. 1995. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J. Biol Chem. 270:1098–1101.

    Article  PubMed  Google Scholar 

  • Dix, D. R., J. T. Bridgham, M. A. Broderius, C. A. Byersdorfer, and D. J. Eide. 1994. The FET4 gene encodes the low affinity Fe(II) transport of Saccharomyces cerevisiae. J. Biol. Chem. 269:26092–26099.

    PubMed  CAS  Google Scholar 

  • Dix, D., J. Bridgham, M. Broderius, and D. Eide. 1997. Characterization of the Fet4p protein of yeast: Evidence for a direct role in the transport of iron. J. Biol Chem.(in press).

    Google Scholar 

  • Eide, D., M. Broderius, J. Fett, and M. L. Guerinot. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. U.S.A. 93:5624–562

    Article  PubMed  CAS  Google Scholar 

  • Eide, D., S. Davis-Kaplan, I. Jordan, D. Sipe, and J. Kaplan. 1992. Regulation of iron uptake in Saccharomyces cerevisiae:The ferrireductase and Fe(II) transporter are regulated independently. J. Biol. Chem. 267:20774–20781.

    PubMed  CAS  Google Scholar 

  • Evans, S. L., J.E.L. Arceneaux, B. R. Byers, M. E. Martin, and H. Aranha. 1986. Ferrous iron transport in Streptococcus mutans. J. Bacteriol. 168:1096–1099.

    CAS  Google Scholar 

  • Fox, T. C., J. E. Shaff, M. A. Gruzak, W. A. Norvell, Y. Chen, R. L. Chaney, and L. V. Kochian. 1996. Direct measurement of 59Fe-labeled Fe2+ influx in roots of Pisum sativum using a chelator buffer system to control free Fe2+ in solution. Plant Physiol 111:93–100.

    PubMed  CAS  Google Scholar 

  • Fuhrmann, G. F., and A. Rothstein. 1968. The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim. Biophys. Acta 163:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Georgatsou, E., and D. Alexandraki. 1994. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell. Biol.. 14:3065–3073.

    PubMed  CAS  Google Scholar 

  • Grusak, M. A., R. M. Welch, and L. V. Kochian. 1990. Does iron deficiency in Pisum sativum enhance the activity of the root plasmalemma iron transport protein? Plant Physiol. 94:1353–1357.

    Article  PubMed  CAS  Google Scholar 

  • Han, O., M. L. Failla, A. D. Hill, E. R. Morris, and J. C. Smith. 1994. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J. Nutr. 125:1291–1299.

    Google Scholar 

  • Harris, L., Y. Takahashi H., Miyajima, M. Serizawa, R. T. A. MacGillivray, and J. D. Gitlin. 1995. Aceruloplasmin: Molecular characterization of this disorder of iron metabolism. Proc. Natl. Acad. Sci. U.S.A. 92:2539–254

    Article  PubMed  CAS  Google Scholar 

  • Hassett, R., and D. J. Kosman. 1995. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem.. 270:128–134.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W., L. Varner, and M. Poch. 1991. Acquisition of iron by Legionella pneumophila:Role of iron reductase. Infect. Imm.. 59:2376–2381.

    CAS  Google Scholar 

  • Jordan, I., and J. Kaplan. 1994. The mammalian transferrin-independent iron transport system may involve surface ferroxidase activity. Biochem. J. 302:875–879.

    PubMed  CAS  Google Scholar 

  • Jungmann, J., H. Reins, J. Lee, A. Romeo, R. Hassett, D. Kosman, and S. Jentsch. 1993. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12:5051–5056.

    PubMed  CAS  Google Scholar 

  • Kamizono, A., M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura. 1989. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet.. 219:161–167.

    Article  PubMed  CAS  Google Scholar 

  • Kammler, M., C. Schon, and K. Hantke. 1993. Characterization of the ferrous iron uptake system of Escherichia coli. J. Bacteriol. 175:6212–6219.

    PubMed  CAS  Google Scholar 

  • Ko, C. H., and R. F. Gaber. 1991. TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell. Biol. 11:4266–4273.

    PubMed  CAS  Google Scholar 

  • Ko, C. H., H. Liang, and R. F. Gaber. 1993. Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:638–648.

    PubMed  CAS  Google Scholar 

  • Lee, G. R., S. Nacht, J. N. Lukens, and G. E. Cartwright. 1968. Iron metabolism in copper deficient swine. J. Clin. Invest. 47:2058–2069.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse E., M. Casteras-Simon, and P. Labbe. 1996. Evidence for Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. J. Biol. Chem. 271:13578–13583.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse E., R. R. Crichton, and P. Labbe. 1990. Iron-reductases in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1038:253–259.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse, E., B. Horion, P. Labbe, and F. Hilger. 1991. The plasma membrane ferrireductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP. Biochem. J. 280:545–548.

    PubMed  CAS  Google Scholar 

  • Lesuisse, E., and P. Labbe. 1989. Reductive and nonreductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J. Gen. Microbiol. 135:257–263.

    PubMed  CAS  Google Scholar 

  • Lesuisse, E., F. Raguzzi, and R. R. Crichton. 1987. Iron uptake by the yeast Saccharomyces cerevisiae:Involvement of a reduction step. J. Gen. Microbiol. 133:3229–3236.

    PubMed  CAS  Google Scholar 

  • Lesuisse, E., M. Simon, R. Klein, and P. Labbe. 1992. Excretion of anthranilate and 3-hydroxyanthranilate by Saccharomyces cerevisiae: Relationship to iron metabolism. J. Gen. Microbiol. 138:85–89.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey, J. A., P. H. Williams, and A. M. Cashmore. 1996. Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142:485–492.

    Article  PubMed  CAS  Google Scholar 

  • Mowll, J. L., and G. M. Gadd. 1983. Zinc uptake and toxicity in the yeast Sporobolomyces roseus and Saccharomyces cerevisiae. J. Gen. Microbiol 129:3421–3425.

    CAS  Google Scholar 

  • Nunez, M. T., X. Alvarez, M. Smith, V. Tapia, and J. Glass. 1994. Role of redox systems on Fe3+ uptake by transformed human intestinal epithelial (Caco-2) cells. Amer. J. Physiol 267:C1582–C1588.

    PubMed  CAS  Google Scholar 

  • Nunez, M. T., A. Escobar, A. Ahumada, and M. Gonzalez-Sepulveda. 1992. Sealed reticulocyte ghosts. An experimental model for the study of Fe(II) transport. J. Biol Chem. 267:11490–11494.

    PubMed  CAS  Google Scholar 

  • Osaki, S., D. A. Johnson, and E. Frieden. 1966. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol Chem. 241:2746–2751.

    PubMed  CAS  Google Scholar 

  • Oshiro, S., H. Nakajima, T. Markello, D. Krasnewich, I. Bernardini, and W. A. Gahl. 1993. Redox, transferrin-independent, and receptor-mediated endocytosis iron uptake systems in cultured human fibroblasts. J. Biol Chem. 268:21586–21591.

    PubMed  CAS  Google Scholar 

  • Palmiter, R. D., T. B. Cole, and S. D. Findley. 1996. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15:1784–1791.

    PubMed  CAS  Google Scholar 

  • Palmiter, R. D., and S. D. Findley. 1995. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14:639–649.

    PubMed  CAS  Google Scholar 

  • Rad, M. R., L. Kirchrath, and C. P. Hollenberg. 1994. A putative Cu2+-transporting ATPase gene of chromosome II of Saccharomyces cerevisiae. Yeast. 10:1217–1225.

    Article  CAS  Google Scholar 

  • Raja, K. B., R. J. Simpson, and T. J. Peters. 1992. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim. Biophys. Acta 1135:141–146.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, J. M., G. G. Gallego, and R. Serrano. 1984. Electron transfer constituents in plasma membrane fractions of Avena sativa and Saccharomyces cerevisiae. Plant Sci. Lett. 34:103–110.

    Article  CAS  Google Scholar 

  • Roman, D. G., A. Dancis, G. J. Anderson, and R. D. Klausner. 1993. The fission yeast ferric reductase gene frpl + is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol. 13:4342–4350.

    PubMed  CAS  Google Scholar 

  • Romheld, V., and H. Marschner. 1983. Mechanism of iron uptake by peanut plants. Plant Physiol. 71:949–954.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, A., A. Hayes, D. Jennings, and D. Hooper. 1958. The active transport of Mg(II) and Mn(II) into the yeast cell. J. Gen. Physiol. 41:585–594.

    Article  PubMed  CAS  Google Scholar 

  • Rotrosen, D., C. L. Yeung, T. L. Leto, H. L. Malech, and C. H. Kwong. 1992. Cytochrome b558: The flavin-binding component of the phagocyte NADPH oxidase. Science 256:1459–1462.

    Article  PubMed  CAS  Google Scholar 

  • Schwyn, B., and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem.. 160:47–56.

    Article  PubMed  CAS  Google Scholar 

  • Shatwell, K. P., A. Dancis, A. R. Cross, R. D. Klausner, and A. W. Segal. 1996. The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J.Biol. Chem. 271:14240–14244.

    Article  PubMed  CAS  Google Scholar 

  • Stearman, R., D. S. Yuan, Y. Yamaguchi-Iwai, R. D. Klausner, and A. Dancis. 1996. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi, R. E., K. Petrukhin, I. Chernov, J. L. Pellequer, W. Wasco, B. Ross, D. M. Romano, E. Parano, L. Pavone, L. M. Brzustowicz, M. Devoto, J. Peppercorn, A. I. Bush, I. Sternlieb, M. Pirastu, J. F. Gusella, O. Evgrafov, G. K. Penchaszadeh, B. Honig, I. S. Edelman, M. B. Soares, I. H. Scheinberg, and T. C. Gilliam. 1993. The Wilson’s disease gene is a copper transporting ATPase with homology to the Menkes’ disease gene. Nature Genet. 5:344–350.

    Article  PubMed  CAS  Google Scholar 

  • Thorstensen, K., and I. Romslo. 1988. Uptake of iron from transferrin by isolated rat hepatocytes. J. Biol. Chem. 263:8844–8850.

    PubMed  CAS  Google Scholar 

  • Trikha, J., E. C. Theil, and N. M. Allewell. 1995. High resolution crystal structures of amphibian red-cell L ferritin: Potential roles for structural plasticity and solvation in function. J. Mol. Biol. 248:949–967.

    Article  PubMed  CAS  Google Scholar 

  • Von Heijne, G. 1983. Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133:17–21.

    Article  Google Scholar 

  • Vulpe, C., B. Levinson, S. Whitney, S. Packman, and J. Gitschier. 1993. Isolation of a candidate gene for Menkes’ disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3:7–13.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, J. A., J. D. Altazan, P. Elder, C. Y. Lin, M. T. Nunez, X. X. Cui, and J. Glass. 1992. Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. Biochem. 31:5820–5830.

    Article  CAS  Google Scholar 

  • White, C., and G. M. Gadd. 1987. The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J. Gen. Microbiol. 133:727–737.

    CAS  Google Scholar 

  • Winkelmann, G., D. Van der Helm, and J. B. Neilands. (ed.). 1987. Iron Transport in Microbes, Plants and Animals. VCH Verlagsgesellschaft, New York.

    Google Scholar 

  • Yamaguchi-Iwai, Y., A. Dancis, and R. D. Klausner. 1995. AFT1: A mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J. 14:1231–12

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Iwai, Y., R. Stearman, A. Dancis, and R. D. Klausner. 1996. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J.(in press).

    Google Scholar 

  • Yi, Y., and M. L. Guerinot. 1996. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 15:3377–338

    Google Scholar 

  • Yi, Y., J. Saleeba, and M. L. Guerinot. 1994. Iron uptake in Arabidopsis thaliana.In Biochemistry of Metal Micronutrients in the Rhizosphere,eds. J. Manthey, D. Luster, and D. E. Crowley, pp. 295–307. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Yoshida, K., K. Furihata, S. Takeda, A. Nakamura, K. Yamamoto, H. Morita, S. Hiyamuta, S. Ikeda, N. Shimizu, and N. Yanagisawa. 1995. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nature Genet. 9:267–272.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, D. S., R. Stearman, A. Dancis, T. Dunn, T. Beeler, and R. D. Klausner. 1995. The Menkes’/Wilson’s disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. U.S.A. 92:2632–2636.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., and D. Eide. 1996 a. The yeast ZRT1 gene encodes the zinc transporter of a high affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. U.S.A. 93:2454–2458.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., and D. Eide. 1996 b. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J. Biol. Chem. 271:23203–23210.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eide, D. (1998). The Molecular Biology of Iron and Zinc Uptake in Saccharomyces cerevisiae . In: Silver, S., Walden, W. (eds) Metal Ions in Gene Regulation. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5993-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5993-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7745-0

  • Online ISBN: 978-1-4615-5993-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics