Skip to main content

Molecular Biology of Mycobacterium Tuberculosis

  • Chapter
Mycobacteria

Abstract

Molecular biology is simply the study of the biology of organisms at the molecular level. It includes investigations to define cellular architecture, biochemical pathways, macromolecular composition, structure, and function, and gene structure, regulation, and expression. This broad discipline of science encompasses diverse techniques ranging from sophisticated chemistry such as mass spectros-copy and x-ray crystallography to simple biochemistry such as assays for β-galactosidase activity. This chapter will concentrate on the aspect of molecular biology usually referred to as molecular genetics, which is concerned with defining gene structure, regulation of gene expression, protein products of genes, and functions of genes and gene products. The reader is referred to other chapters in this volume and several recent excellent reviews for discussions of other aspects of the molecular biology of Mycobacterium tuberculosis, including cellular architecture, macromolecular composition, and biochemistry (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minikin DE. (1991) Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res. Microbiol. 142:423–427.

    Google Scholar 

  2. Bloom BR, ed. (1994) Tuberculosis: Pathogenesis, Protection, and Control. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  3. Kubica GP, Wayne LG, eds. (1984) The Mycobacteria: A Sourcebook. New York: Marcel Dekker.

    Google Scholar 

  4. Hansen GA (1880) Bacillus leprae. Virchows Archiv 79:32–42.

    Google Scholar 

  5. Koch R (1882) Die Aetiologie der Tuberkulose. Berliner Klin Wochenschr 19:221–230.

    Google Scholar 

  6. Koch R (1891) Weitere Mittheilung uber das Tuberkulin. Dtsch Med Wochenschr 17:1189–1192.

    Google Scholar 

  7. Seibert FB, Munday B (1932) The chemical composition of the active principle of tuberculin. XV. A precipitated purified tuberculin protein suitable for the preparation of a standard tuberculin. Am Rev Tuberc 25:724–737.

    CAS  Google Scholar 

  8. Daniel TM, Janicki BW (1978) Mycobacterial antigens: A review of their isolation, chemistry, and immunologic properties. Microbiol Rev 42:84–113.

    PubMed  CAS  Google Scholar 

  9. Anderson AB, Brennan P (1994) Proteins and antigens of Mycobacterium tuberculosis. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 307–332. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  10. Anderson RJ (1939) The chemistry of the lipoids of the tubercle bacillus and certain other organisms. Fortschr Chem Organisch Naturstoffe 3:145–202.

    CAS  Google Scholar 

  11. Besra GS, Chatterjee D (1994) Lipids and carbohydrates of Mycobacterium tuberculosis. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 285–306. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  12. Brennan PJ, Draper P (1994) Ultrastructure of Mycobacterium tuberculosis. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 271–284. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  13. Clark-Curtiss JE (1990) Genome structure of mycobacteria. In: McFadden JJ, ed. Molecular Biology of the Mycobacteria, pp. 77–96. London: Harcourt Brace Jovanovich Publishers.

    Google Scholar 

  14. Clark-Curtiss J, Jacobs W, Docherty M, Ritchie L, Curtiss R (1985) Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J Bacteriol 161:1093–1102.

    PubMed  CAS  Google Scholar 

  15. Jacobs WR, Docherty M, Curtiss R, Clark-Curtiss JE (1986) Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Escherichia coli K-12. Proc Natl Acad Sci USA 83:1926–1939.

    PubMed  CAS  Google Scholar 

  16. Young RA, Mehra V, Sweetser D, Buchanan T, Clark-Curtiss J, Davis RW, Bloom BR (1985) Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature 316:450–452.

    PubMed  CAS  Google Scholar 

  17. Young RA, Bloom BR, Grosskinsky CM, Ivanyi J, Thomas D, Davis RW (1985) Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci USA 82:2583–2587.

    PubMed  CAS  Google Scholar 

  18. Young RA, Davis RW (1983) Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 80:1194–1198.

    PubMed  CAS  Google Scholar 

  19. Young DB, Mehlert A (1989) Serology of mycobacteria: Characterization of antigens recognized by monoclonal antibodies. Rev Infect Dis 11:S431–S435.

    PubMed  Google Scholar 

  20. Young RA (1990) Stress proteins and immunology. Annu Rev Immunol 8:401–420.

    PubMed  CAS  Google Scholar 

  21. Shinnick TM (1991) Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol 167:145–160.

    PubMed  CAS  Google Scholar 

  22. Shinnick T (1995) Mycobacterial heat shock proteins. In: Rom W, Garay S, eds. Tuberculosis. Boston: Little, Brown and Co.

    Google Scholar 

  23. Winfield JB, Jarjour WN (1991) Stress proteins, autoimmunity, and autoimmune disease. Curr Top Microbiol Immunol 167:161–189.

    PubMed  CAS  Google Scholar 

  24. van Eden W (1991) Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immunol Rev 121:5–28.

    PubMed  Google Scholar 

  25. Rinke de Wit TF, Bekelie S, Osland A, Miko TL, Hermans PWM, van Soolingen D, Drijfhout JW, Schoningh R, Janson AAM, Thole JER (1992) Mycobacteria contain two groEL genes: The second Mycobacterium leprae groEL gene is arranged in an operon with groES. Mol Microbiol 6:1995–2007.

    Google Scholar 

  26. Kong TH, Coates ARM, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci USA 90:2608–2612.

    PubMed  CAS  Google Scholar 

  27. Mazodier P, Guglielmi G, Davies J, Thompson CJ (1991) Characterization of the gwEL-like genes in Streptomyces albus. J Bacteriol 173:7382–7386.

    PubMed  CAS  Google Scholar 

  28. Hughes AL (1993) Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol 10:1343–1359.

    PubMed  CAS  Google Scholar 

  29. Sela S, Clark-Curtiss JE, Bercovier H (1989) Characterization and taxonomic implications of the rRNA genes of Mycobacterium leprae. J Bacteriol 171:70–73.

    PubMed  CAS  Google Scholar 

  30. Miller LM, Crawford JT, Shinnick TM (1994) The Mycobacterium tuberculosis rpoB gene. Antimicrob Agents Chemother 38:805–811.

    PubMed  CAS  Google Scholar 

  31. Colston MJ, Davis EO (1994) Homologous recombination, DNA repair, and mycobacterial recA genes. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 217–226. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  32. Colston MJ, Davis EO (1994) The ins and outs of protein splicing elements. Molec Microbiol 12:359–363.

    CAS  Google Scholar 

  33. Greenberg J, Woodley CL (1984) Genetics of mycobacteria. In: Kubica GP, Wayne LG, eds. The Mycobacteria: A Sourcebook, pp. 629–639. New York: Marcel Dekker.

    Google Scholar 

  34. Mizuguchi Y (1984) Mycobacteriophages. In: Kubica GP, Wayne LG, eds. The Mycobacteria: A Sourcebook, pp. 641–662 New York: Marcel Dekker.

    Google Scholar 

  35. Katanuma N, Nakasato H (1954) A study of the mechanism of the development of streptomycin resistant organisms by addition of deoxyribonucleic acid prepared from resistant bacilli. Kekkaku 29:19–22.

    Google Scholar 

  36. Bloch H, Walter A, Yamamura Y (1959) Failure of desoxyribonucleic acid from mycobacteria to induce bacterial transformation. Am Rev Respir Dis 80:911.

    CAS  Google Scholar 

  37. Tokunaga T, Sellers MI (1964) Infection of Mycobacterium smegmatis and D29 phage DNA. J Exp Med 119:139–149.

    PubMed  CAS  Google Scholar 

  38. Mizaguchi Y, Tokunaga T (1968) Spheroplast of mycobacteria. II. Infection of phage and its DNA on glycine-treated mycobacteria and spheroplast. Med Biol 77:57–60.

    Google Scholar 

  39. Jacobs WR, Tuckman M, Bloom BR (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535.

    PubMed  CAS  Google Scholar 

  40. Snapper SB, Lugosi L, Jekkel A, Melton RE, Kieser T, Bloom BR, Jacobs WR (1988) Lysogeny and transformation in mycobacteria: Stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991.

    PubMed  CAS  Google Scholar 

  41. Jacobs WR, Kalpana GV, Cirilo JD, Pascopella L, Snapper SB, Udani RA, Jones W, Barletta RG, Bloom BR (1991) Genetic systems for mycobacteria. Methods Enzymol 204:537–555.

    PubMed  CAS  Google Scholar 

  42. Snapper SB, Melton RE, Mustapha S, Kieser T, Jacobs WR (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 11:1911–1919.

    Google Scholar 

  43. Hatfull GF, Jacobs WR (1994) Mycobacteriophages: Cornerstones of mycobacterial research. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 165–183. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  44. Hatfull GF (1993) Genetic transformation of mycobacteria. Trends Microbiol 1:310–314

    PubMed  CAS  Google Scholar 

  45. Berlein JE, Stover CK, Offutt S, Hanson MS (1994) Expression of foreign genes in mycobacteria. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 239–252. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  46. Jacobs WR, Bloom BR (1994) Molecular genetic strategies for identifying virulence determinants of Mycobacterium tuberculosis. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 253–268. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  47. Falkinham JO, Crawford JT (1994) Plasmids In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 185–198. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  48. Hatfull GF (1994) Mycobacteriophage L5: A toolbox for tuberculosis. ASM News 60:255–260.

    Google Scholar 

  49. Anes E, Portugal I, Moniz-Pereira J (1992) Insertion into the Mycobacterium smegmatis genome of the aph gene through lysogenization with the temperate mycobacteriophage Ms6. FEMS Microbiol Lett 95:21–25.

    CAS  Google Scholar 

  50. Crawford JT (1996) Unpublished results.

    Google Scholar 

  51. Ranes MG, Rauzier J, Lagranderie M, Gheroghiu M, Gicquel B (1990) Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: Construction of a ‘Mini’ mycobactenum-Escherichia coli shuttle vector. J Bacteriol 172:2793–2797.

    PubMed  CAS  Google Scholar 

  52. Garbe TR, Barathi J, Barnini S, Zhang Y, Abou-Zeid C, Tang D, Mukherjee R, Young DB (1994) Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140:133–138.

    PubMed  CAS  Google Scholar 

  53. Donnelly-Wu MK, Jacobs WR, Hatfull GF (1993) Superinfection immunity of mycobacteriophage L5: Applications for genetic transformation of mycobacteria. Molec Microbiol 7:407–417.

    CAS  Google Scholar 

  54. Qin MH, Taniguchi H, Mizuguchi Y (1994) Analysis of the replication region of a mycobacterial plasmid, pMSC262. J Bacteriol 176:419–425.

    PubMed  CAS  Google Scholar 

  55. David M, Lubinsky-Mink S, Ben-Zvi A, Ulitzur S, Kuhn J, Suissa M (1992) A stable Escherichia coli-Mycobacterium smegmatis plasmid shuttle vector containing the mycobacteriophage D29 origin. Plasmid 28:267–271.

    PubMed  CAS  Google Scholar 

  56. Singer MEV, Finnerty WR (1988) Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. J Bacteriol 170:638–645.

    PubMed  CAS  Google Scholar 

  57. Plikaytis BB, Shinnick TM. (1996) Unpublished observations.

    Google Scholar 

  58. Radford AJ, Hodgson ALM (1991) Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector. Plasmid 25:149–153.

    PubMed  CAS  Google Scholar 

  59. Zainuddin ZF, Kunze ZM, Dale JW (1989) Transformation of Mycobacterium smegmatis with Escherichia coli plasmids carrying a selectable resistance marker. Molec Microbiol 3:29–34.

    CAS  Google Scholar 

  60. Gormley EP, Davies J (1991) Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividins and Mycobacterium smegmatis. J Bacteriol 173:6705–6708.

    PubMed  CAS  Google Scholar 

  61. Hinselwood S, Stoker NG (1992) An Escherichia coli-Mycobacterium shuttle cosmid vector. Gene 110:115–118.

    Google Scholar 

  62. Pascopella L, Collins FM, Martin JM, Lee MH, Hatfull GF, Stover CK, Bloom BR, Jacobs WR (1994) Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62:1313–1319.

    PubMed  CAS  Google Scholar 

  63. Hermans J, Martin C, Huijberts GNM, Goosen T, de Bont JAM (1991) Transformation of Mycobacterium aurum and Mycobacterium smegmatis with the broad host-range gram-negative cosmid vector pJRD215. Molec Microbiol 5:1561–1566.

    CAS  Google Scholar 

  64. Lee MH, Pascopella L, Jacobs WR, Hatfull GF (1991) Site specific integration of mycobacteriophage L5: Integration-proficient vectors for Mycobacterium smegmatis, BCG, and M. tuberculosis. Proc Natl Acad Sci USA 88:3111–3115.

    PubMed  CAS  Google Scholar 

  65. Martin C, Mazodier P, Mediola MV, Gicquel B, Smokvina T, Thompson CJ, Davies J (1991) Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis. Molec Microbiol 5:2499–2502.

    CAS  Google Scholar 

  66. Haeseleer F, Pollet JF, Haumont M, Bollen A, Jacobs P (1993) Stable integration and expression of the Plasmodium falciparum circumsporozoite protein coding sequence in mycobacteria. Molec Biol Parasit 57:117–126.

    CAS  Google Scholar 

  67. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR, Bloom BR (1991) New use of BCG for recombinant vaccines. Nature 351:456–460.

    PubMed  CAS  Google Scholar 

  68. Matsuo K, Yamaguchi R, Yamazaki A, Tasaka H, Terasaka K, Totsuka M, Kobayashi K, Yukitake H, Yamada T (1990) Establishment of a foreign antigen secretion system in mycobacteria. Infect Immun 58:4049–4054.

    PubMed  CAS  Google Scholar 

  69. Barletta RG, Kim DD, Snapper SB, Bloom Br, Jacobs WR (1992) Identification of expression signals of the mycobacteriophages Bxbl, L1, and TM4 using the Escherichia-Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create translational fusions to the lacZ gene. J Gen Microbiol 138:23–30.

    PubMed  CAS  Google Scholar 

  70. Timm J, Perilli MG, Duez C, Trias J, Orefici G, Fattorini L, Amicosante G, Oratore A, Joris B, Frere JM, Pugsley AP, Gicquel B (1994) Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum β-lactamase genes cloned from a natural isolate and a high-level β-lactamase producer. Molec Microbiol 12:491–504.

    CAS  Google Scholar 

  71. Cooksey RC, Crawford JT, Jacobs WR, Shinnick TM (1993) A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother 37:1348–1352.

    PubMed  CAS  Google Scholar 

  72. Andrew PW, Roberts IS (1993) Construction of a bioluminescent mycobacterium and its use for assay of antimycobacterial agents. J Clin Microbiol 31:2251–2254.

    PubMed  CAS  Google Scholar 

  73. Das Gupta SK, Bashyam MD, Tyagi AK (1993) Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J Bacteriol 175:5186–5192.

    PubMed  Google Scholar 

  74. Guilhot C, Gicquel B, Davies J, Martin C (1992) Isolation and analysis of IS6120, a new insertion sequence from Mycobacterium smegmatis. Molec Microbiol 6:107–113.

    CAS  Google Scholar 

  75. Cirillo JD, Barletta RG, Bloom BR, Jacobs WR (1991) A novel transposon trap for mycobacteria: Isolation and characterization of IS1096. J Bacteriol 173:7772–7780.

    PubMed  CAS  Google Scholar 

  76. Guilhot C, Gicquel B, Martin C (1992) Temperature sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett 98:181–186.

    CAS  Google Scholar 

  77. Guilhot C, Otal I, Vanrompaey I, Martin C, Gicquel B (1994) Efficient transposition in mycobacteria—Construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176:535–539.

    PubMed  CAS  Google Scholar 

  78. Husson RN, James BE, Young RA (1990) Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol 172:519–524.

    PubMed  CAS  Google Scholar 

  79. Connelly N, Bloom BR, Jacobs WR. Unpublished observations cited in Ref. 46.

    Google Scholar 

  80. Curcic R, Deretic V (1994) Promoter probe vectors for mycobacteria based on the xylEgene. Abstract U51. 94th General Meeting of the American Society for Microbiology, p. 181.

    Google Scholar 

  81. Eisenach KD, Crawford JT, Bates JH (1986) Genetic relatedness among strains of the Mycobacterium tuberculosis complex—Analysis of restriction fragment heterogenicity using cloned DNA probes. Am Rev Respir Dis 133:1065–1068.

    PubMed  CAS  Google Scholar 

  82. Clark-Curtiss JE, Docherty MA (1989) A species-specific repetitive sequence in Mycobacterium leprae DNA. J Infect Dis 159:7–15.

    PubMed  CAS  Google Scholar 

  83. McFadden JJ, Butcher PD, Chiodini R, Hermon-Taylor J (1987) Crohn’s disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis as determined by DNA probes that distinguish between mycobacterial species. J Clin Microbiol 25:796–801.

    PubMed  CAS  Google Scholar 

  84. Hermans PWM, van Sooligan D, van Embden JDA (1992) Characterization of a major polymorphic tandem repeat in Mycobacterium tuberculosis and its potential use in the epidemiology of Mycobacterium kansasii and Mycobacterium gordonae. J Bacteriol 174:4157–4165.

    PubMed  CAS  Google Scholar 

  85. Crawford JT (1996) Molecular approaches to the detection of mycobacteria. In: Gangadharam PRJ, Jenkins PA, eds. Mycobacteria. Volume 1—Basic Aspects. New York: Chapman & Hall (this volume).

    Google Scholar 

  86. Clark-Curtiss JE, Walsh GP (1989) Conservation of genomic sequences among isolates of Mycobacterium leprae. J Bacteriol 171:4844–4851.

    PubMed  CAS  Google Scholar 

  87. Kapur V, Whittam TS, Musser JM (1994) Is Mycobacterium tuberculosis 15,000 years old? J Infect Dis 170:1348–1349.

    PubMed  CAS  Google Scholar 

  88. Fox GE, Stackebrandt E (1987) The application of 16S rRNA cataloguing and 5S rRNA sequencing in bacterial systematics. Methods Microbiol 19:405–458.

    CAS  Google Scholar 

  89. Rogall T, Wolters J, Rohr T, Bottger EC (1990) Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol 40:323–330.

    PubMed  CAS  Google Scholar 

  90. Kirschner P, Meier A, Bottger EC (1993) Genotypic identification and detection of mycobacteria: Facing novel and uncultured pathogens. In: Persing DH, Tenover F, White TJ, Smith TF, eds. Diagnostic Molecular Microbiology: Principles and Applications, pp. 173–190. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  91. Woese CR (1992) Prokaryote systematics: The evolution of a science. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, vol. 1, p. 3–18. New York: Springer-Verlag.

    Google Scholar 

  92. Pitulle C, Dorsch M, Kazda J, Wolters J, Stackebrandt E (1992) Phytogeny of rapidly growing members of the genus Mycobacterium. Int J Syst Bacteriol 42:337–343.

    PubMed  CAS  Google Scholar 

  93. Stahl DA, Urbance JW (1990) The division between fast-and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol 172:116–124.

    PubMed  CAS  Google Scholar 

  94. Musial CE, Tice LS, Stockman L, Roberts GD (1988) Identification of mycobacteria from culture by using Gen-Probe Rapid Diagnostic System for Mycobacterium avium complex and Mycobacterium tuberculosis complex. J Clin Microbiol 26:2120–2123.

    PubMed  CAS  Google Scholar 

  95. Rogall T, Flohr T, Bottger EC (1990) Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J Gen Microbiol 136:1915–1920.

    PubMed  CAS  Google Scholar 

  96. Cole ST, Smith DR (1994) Toward mapping and sequencing the genome of Mycobacterium tuberculosis. In: Bloom BR, ed. Tuberculosis: Pathogenesis, Protection, and Control, pp. 227–238. Washington DC: American Society for Microbiology Press.

    Google Scholar 

  97. Bergh S, Cole ST (1994) MycDB: An integrated mycobacterial database. Molec Microbiol 12:517–534.

    CAS  Google Scholar 

  98. Shinnick TM (1987) The 65-kilodalton antigen of Mycobacterium tuberculosis. J Bacteriol 169:1080–1088.

    PubMed  CAS  Google Scholar 

  99. Hatfull GF, Sarkis GJ (1993) DNA sequence, structure, and gene expression of mycobacteriophage L5: A phage system for mycobacterial genetics. Molec Microbiol 7:395–405.

    CAS  Google Scholar 

  100. Falkow S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10:S274–S276.

    PubMed  Google Scholar 

  101. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650.

    PubMed  CAS  Google Scholar 

  102. Jun Jin D, Gross CA (1988) Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampin resistance. J Molec Biol 202:45–58.

    Google Scholar 

  103. Kalpana GV, Bloom BR, Jacobs WR (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci USA 88:5433–5437.

    PubMed  CAS  Google Scholar 

  104. Aldovini A, Husson RN, Young RA (1993) The uraA locus and homologous recombination in Mycobacterium bovis BCG. J Bacteriol 175:7282–7289.

    PubMed  CAS  Google Scholar 

  105. Gangadharam PRJ. Drug resistance in tubercle bacillic In: Gangadharam PRJ, Jenkins PA, eds. Mycobacteria. Volume 1—Basic Aspects. New York: Chapman & Hall. (This volume).

    Google Scholar 

  106. Jacobs WR, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822.

    PubMed  CAS  Google Scholar 

  107. Guerin C (1980) The history of BCG. In: Rosenthal SR, ed. BCG vaccine: Tuberculosis-Cancer, pp. 35–43. Littleton, MA: PSG Publishing Co.

    Google Scholar 

  108. Steenken W, Oatway WH, Petroff SA (1934) Biological studies of the tubercle bacillus. III. Dissociation and pathogenicity of the R and S variants of the human tubercle bacillus (H37). J Exp Med 60:515–540.

    PubMed  CAS  Google Scholar 

  109. Steenken W, Gardner LU (1946) History of H37 strain of tubercle bacillus. Am Rev Tuberc 54:62–66.

    PubMed  Google Scholar 

  110. Horwitz MA (1988) Intracellular parasitism. Curr Opin Immunol 1:41–46.

    PubMed  CAS  Google Scholar 

  111. Rastogi N, ed. (1990) Killing intracellular mycobacteria: dogmas and realities. Fifth Forum in Microbiology. Res Microbiol 141:191–270.

    Google Scholar 

  112. Fields P, Swanson R, Haidaris C, Heffron F (1986) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83:5189–5193.

    PubMed  CAS  Google Scholar 

  113. Fields PI, Grossman EA, Heffron F (1989) A Salmonella locus that confers resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062.

    PubMed  CAS  Google Scholar 

  114. Isberg RR, Falkow S (1985) A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317:262–264.

    PubMed  CAS  Google Scholar 

  115. Finlay BB, Falkow S (1989) Common themes in microbial pathogenicity. Microbiol Rev 53:210–230.

    PubMed  CAS  Google Scholar 

  116. Shepard CC (1958) A comparison of the growth of selected mycobacteria in HeLa, monkey kidney, and human amnion cells in tissue culture. J Exp Med 107:237–246.

    PubMed  CAS  Google Scholar 

  117. Arruda S, Bomfim G, Knights R, Hiuma-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457.

    PubMed  CAS  Google Scholar 

  118. Mundayoor S, Shinnick TM (1994) Identification of genes involved in the resistance of mycobacteria to killing by macrophages. Ann NY Acad Sci 730:26–36.

    PubMed  CAS  Google Scholar 

  119. Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688.

    PubMed  CAS  Google Scholar 

  120. Marston BJ, King CH, Quinn FD, Shinnick TM (1994) Differentially expressed genes of Mycobacterium tuberculosis. Abstract in Proceedings of the 29th U.S.-Japan Conference on Tuberculosis and Leprosy, pp. 143–147.

    Google Scholar 

  121. Utt EA, Brousal JP, Kikuta-Oshima LC, Quinn FD (1995) mRNA subtractive hybridization identifies variations in bacterial gene expression. Nucleic Acids Res.

    Google Scholar 

  122. Kikuta-Oshima LC, King CH, Shinnick TM, Quinn FD (1994) Methods for the identification of virulence genes expressed in Mycobacterium tuberculosis strain H37Rv. Ann NY Acad Sci 730:263–265.

    PubMed  CAS  Google Scholar 

  123. Kinger AK, Tyagi JS (1993) Identification and cloning of genes differentially expressed in the virulent strain of Mycobacterium tuberculosis. Gene 131:113–117.

    PubMed  CAS  Google Scholar 

  124. Quinn FD, King CH, Kikuta-Oshima LC, Utt EA, Shinnick TM (1993) Subtractive hybridization methods for the identification of M. tuberculosis genes expressed specifically in virulent strains and clinical specimens. Abstract in Proceedings of the 28th U.S.-Japan Conference on Tuberculosis and Leprosy, pp. 184–188.

    Google Scholar 

  125. Plum G, Clark-Curtiss JE. Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun 62:476–483.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shinnick, T.M. (1998). Molecular Biology of Mycobacterium Tuberculosis . In: Gangadharam, P.R.J., Jenkins, P.A. (eds) Mycobacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5987-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5987-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7743-6

  • Online ISBN: 978-1-4615-5987-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics