Skip to main content

Nitric Oxide Signaling Through Mitochondrial Calcium Release

  • Chapter
Oxidative Stress and Signal Transduction

Abstract

Free calcium ions are important for the regulation of many enzyme systems, including those responsible for muscle contraction, nerve impulse transmission, neuronal activity, blood clotting, and modulation of hormone action. Intracellular Ca2+ can act as a second messenger in a variety of signaling systems. To serve these functions, fine-tuning of the intracellular Ca2+ concentration is essential. This is achieved by binding of Ca2+ to nonmembraneous proteins and by membrane-bound transport systems. Mitochondrial Ca2+ uptake and release participate directly in the regulation of the cytoplasmic Ca2+ concentration, and nitric oxide and its congeners modulate these mitochondrial activities in several ways. Thus, nitric oxide (nitrogen monoxide, NO) binds to cytochrome oxidase and thereby prevents respiration and the maintenance of the mitochondrial membrane potential (ΔΨ). The deenergization of mitochondria results in Ca2+ release from and prevention of Ca2+ uptake by mitochondria. Peroxynitrite (ONOO-), the product formed by the reaction of NO- with Superoxide (O2-), stimulates mitochondrial Ca2+ release with preservation of ΔΨ. The NO-dependent modulation of Ca2+ transport by mitochondria may be used in cell signaling, as exemplyfied by glucose-triggered insulin secretion from pancreatic beta cells. Insulin secretion, which occurs in two phases, requires an increase in the cytoplasmic free Ca2+ concentration. Beta cells produce nitric oxide, and release insulin in response to glucose during the first phase in an nitric oxide synthase-sensitive manner. When NO. is added to rat insulinoma cells, mitochondria become deenergized and lose their Ca2+. The resulting increase in the cytoplasmic free Ca2+ then triggers insulin secretion. Since the mitochondrial energy state seems to be under the control of nitric oxide it is expected that future studies will identify other Ca2+-dependent signaling systems, which are modulated by the action of nitric oxide and its congeners on mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unger, R. H. 1981. The milieu interieur and the islets of Langerhans. Diabetologia 20: 1–11.

    Article  PubMed  CAS  Google Scholar 

  2. Thorens, B., H. K. Sarkar, H. R. Kaback, and H. F. Lodish. 1988. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55: 281–290.

    Article  PubMed  CAS  Google Scholar 

  3. Matschinsky, F. M., and J. E. Ellerman. 1968. Metabolism of glucose in the islets of Langerhans. J. Biol. Chem. 243: 2730–2736.

    PubMed  CAS  Google Scholar 

  4. Misler, S., L. C. Falke, K. Gillis, and M. L. McDaniel. 1986. A metabolite-regulated potassium channel in rat pancreatic B cells. Proc. Natl. Acad. Sci. USA 83: 7119–7123.

    Article  PubMed  CAS  Google Scholar 

  5. Prentki, M., and F. M. Matschinsky. 1987. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol. Rev. 67: 1185–1248.

    PubMed  CAS  Google Scholar 

  6. Roe, M. W., M. E. Lancaster, R. J. Mertz, J. F. Worley III, and I. D. Dukes. 1993. Voltage-dependent intracellular calcium release from mouse islets stimulated by glucose. J. Biol. Chem. 268: 9953–9956.

    PubMed  CAS  Google Scholar 

  7. Rojas, E., P. B. Carroll, C. Ricordi, A. C. Boschero, S. S. Stojilkovic, and I. Atwater. 1994. Control of cytosolic free calcium in cultured human pancreatic beta-cells occurs by external calcium-dependent and-independent mechanisms. Endocrinology 134: 1771–1781.

    Article  PubMed  CAS  Google Scholar 

  8. Takasawa, S., K. Nata, H. Yonekura, and H. Okamoto. 1993. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science 259: 370–373.

    Article  PubMed  CAS  Google Scholar 

  9. Kato, L, S. Takasawa, A. Akabane, O. Tanaka, H. Abe, T. Takamura, Y. Suzuki, K. Nata, H. Yonekura, T. Yoshimoto, and H. Okamoto. 1995. Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic β cells. J. Biol Chem. 270: 30045–30050.

    Article  PubMed  CAS  Google Scholar 

  10. Smith, P. A., P. Rorsman, and F. M. Ashcroft. 1989. Modulation of dihydropyridinesensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells. Nature 342: 550–553.

    Article  PubMed  CAS  Google Scholar 

  11. Bergsten, P., E. Grapengiesser, E. Gylfe, A. Tengholm, and B. Hellman. 1994. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol Chem. 269: 8749–8753.

    PubMed  CAS  Google Scholar 

  12. Bergsten, P. 1995. Slow and fast oscillations of cytoplasmic Ca2+ in pancreatic islets correspond to pulsatile insulin release. Am. J. Physiol. 268: E282–E287.

    PubMed  CAS  Google Scholar 

  13. Burgess, T. L., and R. B. Kelly. 1987. Constitutive and regulated secretion of proteins. Annu. Rev. Cell. Biol. 3: 243–293.

    Article  PubMed  CAS  Google Scholar 

  14. Olszewski, S., J. T. Deeney, G. T. Schuppin, K. P. Williams, B. E. Corkey, and C. J. Rhodes. 1994. Rab3A effector domain peptides induce insulin exocytosis via a specific interaction with a cytosolic protein doublet. J. Biol. Chem. 269: 27987–27991.

    PubMed  CAS  Google Scholar 

  15. Sadoul, K., J. Lang, C. Montecucco, U. Weiler, R. Regazzi, S. Catsicas, C. B. Wollheim, and P. A. Halban. 1995. SNAP-25 is expressed in islets of Langerhans and is involved in insulin release. J. Cell Biol. 128: 1019–1028.

    Article  PubMed  CAS  Google Scholar 

  16. Lang, J., I. Nishimoto, T. Okamoto, R. Regazzi, C. Kiraly, U. Weiler, and C. B. Wollheim. 1995. Direct control of exocytosis by receptor-mediated activation of the heterotrimeric GTPases Gi and Go or by the expression of the active Gα subunits. EMBO J. 14: 3635–3644.

    PubMed  CAS  Google Scholar 

  17. Carafoli, E. 1987. Intracellular calcium homeostasis. Annu. Rev. Biochem. 56: 395–433.

    Article  PubMed  CAS  Google Scholar 

  18. Wendt-Gallitelli, M. F., and G. Isenberg. 1991. Total and free myoplasmic calcium during a contraction cycle: x-ray microanalysis in guinea-pig ventricular myocytes. J. Physiol. (London) 435: 349–372.

    CAS  Google Scholar 

  19. Rizzuto, R., A. W. M. Simpson, M. Brini, and T. Pozzan. 1992. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358: 325–327.

    Article  PubMed  CAS  Google Scholar 

  20. Rizzuto, R., M. Brini, M. Murgia, and T. Pozzan. 1993. Microdomains with high Ca2+ close to the IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262: 744–747.

    Article  PubMed  CAS  Google Scholar 

  21. Rizzuto, R., C. Bastianutto, M. Brini, M. Murgia, and T. Pozzan. 1994. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126: 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  22. Rutter, G. A., J.-M. Theler, M. Murgia, C. B. Wollheim, T. Pozzan, and R. Rizzuto. 1993. Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic β-cell line. Possible role in glucose and agonist-induced insulin secretion. J. Biol. Chem. 268: 22385–22390.

    PubMed  CAS  Google Scholar 

  23. Miyata, H., H. S. Silverman, S. J. Sollott, E. G. Lakatta, M. D. Stern, and R. G. Hansford. 1991. Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am. J. Physiol. 261: H1123–H1134.

    PubMed  CAS  Google Scholar 

  24. Bird, G. S. J., J. F. Obie, and J. W. Putney, Jr. 1992. Functional homogeneity of the non-mitochondrial Ca2+ pool in intact mouse lacrimal acinar cells. J. Biol. Chem. 267: 18382–18386.

    PubMed  CAS  Google Scholar 

  25. Toescu, E. C., J. M. Gardner, and O. H. Petersen. 1993. Mitochondrial Ca2+ uptake at submicromolar [Ca2+]i in permeabilized pancreatic acinar cells. Biochem. Biophys. Res. Commun. 192: 854–859.

    Article  PubMed  CAS  Google Scholar 

  26. Mix, T. C. H., R. M. Drummond, R. A. Tuft, and F. S. Fay. 1994. Mitochondria in smooth muscle sequester Ca2+ following stimulation of cell contraction. Biophys. J. 66: A97.

    Google Scholar 

  27. Friel, D. D., and R. W. Tsien. 1994. An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+];. J. Neurosci. 14: 4007–4024.

    PubMed  CAS  Google Scholar 

  28. Werth, J. L., and S. A. Thayer. 1994. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci. 14: 348–356.

    PubMed  CAS  Google Scholar 

  29. Loew, L. M., W. Carrington, R. A. Tuft, and F. S. Fay. 1994. Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarization. Proc. Natl. Acad. Sci. USA 91: 4340–4344.

    Article  Google Scholar 

  30. Rapp, P.E., and M. J. Berridge. 1981. The control of transepithelial potential oscillations in the salivary gland of Calliphora erythocephala. J. Exp. Biol. 93: 119–132.

    CAS  Google Scholar 

  31. Rooney, T. A., E. Sass, and A. P. Thomas. 1990. Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J. Biol. Chem. 265: 10792–10796.

    PubMed  CAS  Google Scholar 

  32. Hajnoczky, G., L. D. Robb-Gaspers, M. B. Seitz, and A. P. Thomas. 1995. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82: 415–424.

    Article  PubMed  CAS  Google Scholar 

  33. Jouaville, L. S., F. Ichas, E. L. Holmuhamedov, P. Camacho, and J. D. Lechleiter. 1995. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377: 438–441.

    Article  PubMed  CAS  Google Scholar 

  34. Sparagna, G. C., K. K. Gunter, S.-S. Sheu, and T. E. Gunter. 1995. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J. Biol. Chem. 270: 27510–27515.

    Article  PubMed  CAS  Google Scholar 

  35. McCormack, J. G., A. P. Halestrap, and R. M. Denton. 1990. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70: 391–425.

    PubMed  CAS  Google Scholar 

  36. McCormack, J. G., and R. M. Denton. 1985. Hormonal control of intramitochondrial Ca2+-sensitive enzymes in heart, liver and adipocyte tissue. Biochem. Soc. Trans. 13: 664–667.

    PubMed  CAS  Google Scholar 

  37. Halestrap, A. P., and E. J. Griffiths. 1993. Mitochondrial pyrophosphate metabolism in health and disease, pp. 365–377. In L. H. Lash and D. P. Jones (eds.), Mitochondrial Dysfunction. Academic Press, San Diego.

    Google Scholar 

  38. Yamada, E. W., and N. J. Huzel. 1988. The calcium-binding ATPase inhibitor protein from bovine heart mitochondria. Purification and properties. J. Biol. Chem. 263: 11498–11503.

    PubMed  CAS  Google Scholar 

  39. Brown, G. C. 1992. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J. 284: 1–13.

    PubMed  CAS  Google Scholar 

  40. Sekine, N., V. Cirulli, R. Regazzi, L. J. Brown, E. Gine, J. Tamarit-Rodriguez, M. Girotti, S. Marie, M. J. MacDonald, C. B. Wollheim, and G. A. Rutter. 1994. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cells. Potential role in nutrient sensing. J. Biol. Chem. 269: 4895–4902.

    PubMed  CAS  Google Scholar 

  41. Pralong, W.-F., L. Hunyady, P. Varnai, C. B. Wollheim, and A. Spät. 1992. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc. Natl. Acad. Sci. USA 89: 132–136.

    Article  PubMed  CAS  Google Scholar 

  42. Capponi, A. M., M. F. Rossier, E. Davies, and M. B. Valloton. 1988. Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J. Biol. Chem. 263: 16113–16117.

    PubMed  CAS  Google Scholar 

  43. Pralong, W.-F., C. Bartley, and C. B. Wollheim. 1990. Single islet β-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J. 9: 53–60.

    PubMed  CAS  Google Scholar 

  44. Pralong, W.-F., A. Spät, and C. B. Wollheim. 1994. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J. Biol. Chem. 269: 27310–27314.

    PubMed  CAS  Google Scholar 

  45. Ramirez, R., F. Malaisse-Lagae, A. Sener, and W. J. Malaisse. 1995. The coupling of metabolic to secretory events in pancreatic islets: the mitochondrial redox state. Med. Sci. Res. 23: 249–250.

    Google Scholar 

  46. Ramirez, R., A. Sener, and W. J. Malaisse. 1995. Hexose metabolism in pancreatic islets: effect of D-glucose on the mitochondrial redox state. Mol. Cell. Biochem. 142: 43–48.

    Article  PubMed  CAS  Google Scholar 

  47. Ramirez, R., A. Sener, and W. J. Malaisse. 1995. Hexose metabolism in pancreatic islets: regulation of the mitochondrial NADH/NAD+ ratio. Biochem. Mol. Med. 55: 1–7.

    Article  PubMed  CAS  Google Scholar 

  48. Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527–605.

    PubMed  CAS  Google Scholar 

  49. Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79–110.

    Article  PubMed  CAS  Google Scholar 

  50. Weisiger, R. A., and I. Fridovich. 1973. Mitochondrial Superoxide dismutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248: 4793–4796.

    PubMed  CAS  Google Scholar 

  51. Loschen, G., A. Azzi, C. Richter, and L. Flohe. 1974. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42: 68–72.

    Article  PubMed  CAS  Google Scholar 

  52. Nohl, H., and W. Jordan. 1986. The mitochondrial site of Superoxide formation. Biochem. Biophys. Res. Commun. 138: 533–539.

    Article  PubMed  CAS  Google Scholar 

  53. Nohl, H. 1991. Formation of reactive oxygen species associated with mitochondrial respiration, pp. 108–116. In K. J. P. Davies (ed.), Oxidative Damage and Repair. Pergamon Press, Oxford.

    Google Scholar 

  54. Forman, H. J., and J. Kennedy. 1976. Dihydroorotate-dependent Superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch. Biochem. Biophys. 217: 411–421.

    Google Scholar 

  55. Nohl, H. 1987. A novel Superoxide radical generator in heart mitochondria. FEBS Lett. 214: 269–273.

    Article  PubMed  CAS  Google Scholar 

  56. Sohal, R. S. 1993. Aging, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria. Free Rad. Biol. Med. 14: 583–588.

    Article  PubMed  CAS  Google Scholar 

  57. Richter, C., and B. Frei. 1988. Ca2+ release from mitochondria induced by prooxidants. Free Rad. Biol. Med. 4: 365–375.

    Article  PubMed  CAS  Google Scholar 

  58. Richter, C., and G. E. N. Kass. 1991. Oxidative stress in mitochondria: Its relationship to cellular Ca2+ homeostasis, cell death, proliferation, and differentiation. Chem. Biol. Interact. 77: 1–23.

    Article  PubMed  CAS  Google Scholar 

  59. Richter, C., and M. Schweizer. In press. Oxidative stress in mitochondria. In J. Scandalios (ed.), Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  60. Kröncke, K.-D., K. Fehsel, and V. Kolb-Bachofen. 1995. Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. Biol. Chem. Hoppe-Seyler 376: 327–343.

    Article  PubMed  Google Scholar 

  61. Snyder, S. H. 1995. No endothelial NO. Nature 377: 196–197.

    Article  PubMed  CAS  Google Scholar 

  62. Sessa, W. C., G. Garcia-Cardenas, J. Liu, A. Keh, J. S. Pollock, J. Bradley, S. Thiru, I. M. Braverman, and K. M. Desai. 1995. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J. Biol. Chem. 270: 17641–17644.

    Article  PubMed  CAS  Google Scholar 

  63. Kobzik, L., B. Stringer, J. L. Balligand, M. B. Reid, and J. S. Stamler. 1995. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem. Biophys. Res. Commun. 211: 375–381.

    Article  PubMed  CAS  Google Scholar 

  64. Bates, T. E., A. Loesch, G. Burnstock, and J. B. Clark. 1995. Immunochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem. Biophys. Res. Commun. 213: 896–900.

    Article  PubMed  CAS  Google Scholar 

  65. Nichol, K. A., N. Chan, D. F. Davey, and M. R. Bennett. Location of nitric oxide synthase in the developing avian ciliary ganglion. J. Auton. Nerv. Syst. 51: 91–102.

    Google Scholar 

  66. Stamler, J. S., D. J. Singel, and J. Loscalzo. 1992. Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  67. Stamler, J. S. 1994. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78: 931–936.

    Article  PubMed  CAS  Google Scholar 

  68. Lipton, S. A., Y. B. Choi, Z. H. Pan, S. Z. Lei, H. S. V. Chen, N. J. Sucher, J. Loscalzo, D. J. Singel, and J. S. Stamler. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature 364: 626–632.

    Article  PubMed  CAS  Google Scholar 

  69. Beckman, J. S., T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman. 1990. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc. Natl. Acad. Sci. USA 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  70. Radi, R., J. S. Beckman, K.M. Bush, and B. A. Freeman. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of Superoxide and nitric oxide. J. Biol. Chem. 266: 4244–4250.

    PubMed  CAS  Google Scholar 

  71. Lin, K.-T., J.-Y. Xue, M. Nomen, B. Spur, and P. Y.-K. Wong. 1995. Peroxynitriteinduced apoptosis. J. Biol. Chem. 270: 16487–16490.

    Article  PubMed  CAS  Google Scholar 

  72. Murphy, M. E., and H. Sies. 1991. Reversible conversion of nitroxyl anion to nitric oxide by Superoxide dismutase. Proc. Natl. Acad. Sci. USA 88: 10680–10684.

    Google Scholar 

  73. Lipton, S. A., D. J. Singel, and J. S. Stamler. 1994. Redox-activated states of nitric oxide determine neuronal protection versus neuronal injury, pp. 183–189. In H. Takagi, N. Toda, and R. D. Hawkins (eds.), Nitric Oxide: Roles in Neuronal Communication and Neurotoxicity. Japan Scientific Societies Press and CRC Press, Tokyo.

    Google Scholar 

  74. Lipton, S. A., W.-K. Kim, P. V. Rayudu, W. Asaad, D. R. Arnelle and J. S. Stamler. 1995. Singlet and triplet nitroxyl anion (NO-) lead to NMDA receptor downregulation and neuroprotection. Endothelium 3: S44 (abstract 174).

    Google Scholar 

  75. Laychock, S. G. 1981. Evidence for guanosine 3′,5′-monophosphate as a putative mediator of insulin secretion from isolated rat islets. Endocrinology 108: 1197–1205.

    Article  PubMed  CAS  Google Scholar 

  76. Laychock, S. G., M. E. Modica, and C. T. Cavanaugh. 1991. L-arginine stimulates cyclic guanosine 3′,5′-monophosphate formation in rat islets of Langerhans and RINm5F insulinoma cells: evidence for L-arginine:nitric oxide synthase. Endocrinology 129: 3043–3052.

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt, H. H. H. W., T. D. Warner, K. Ishii, H. Sheng, and F. Murad. 1992. Insulin secretion from pancreatic B cells caused by L-arginine-derived nitrogen oxides. Science 255: 721–723.

    Article  PubMed  CAS  Google Scholar 

  78. Willmott, N. J., A. Galione, and P. A. Smith. 1995. Nitric oxide induces intracellular Ca2+ mobilization and increases secretion of incorporated 5-hydroxytryptamine in rat pancreatic β-cells. FEBS Lett. 371: 99–104.

    Article  PubMed  CAS  Google Scholar 

  79. Corbett, J. A., M. A. Sweetland, J. L. Wang, J. R. Lancaster, Jr., and M. L. McDaniel. 1993. Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc. Natl. Acad. Sci. USA 90: 1731–1735.

    Article  PubMed  CAS  Google Scholar 

  80. Jones, P. M., S. J. Persaud, T. Bjaaland, J. D. Pearson, and S. L. Howell. 1992. Nitric oxide is not involved in the initiation of insulin secretion from rat islets of Langerhans. Diabetologia 35: 1020–1027.

    Article  PubMed  CAS  Google Scholar 

  81. Dawson, T. M., V. L. Dawson, D. A. Bartley, G. R. Uhl, and S. H. Snyder. 1992. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. J. Neurosci. 13: 297–311.

    Google Scholar 

  82. Castro, L., M. Rodriguez, and R. Radi. 1994. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J. Biol. Chem. 269: 29409–29415.

    PubMed  CAS  Google Scholar 

  83. Hausladen, A., and I. Fridovich. 1994. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 269: 29405–29408.

    PubMed  CAS  Google Scholar 

  84. Brown, G. C., and C. E. Cooper. 1994. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356: 295–298.

    Article  PubMed  CAS  Google Scholar 

  85. Carr, G. J., and S. J. Ferguson. 1990. Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim. Biophys. Acta 1017: 57–62.

    Article  PubMed  CAS  Google Scholar 

  86. Schweizer, M., and C. Richter. 1994. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem. Biophys. Res. Commun. 204: 169–175.

    Article  PubMed  CAS  Google Scholar 

  87. Richter, C., V. Gogvadze, R. Schlapbach, M. Schweizer, and J. Schlegel. 1994. Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochem. Biophys. Res. Commun. 205: 1143–1150.

    Article  PubMed  CAS  Google Scholar 

  88. Cleeter, M. W. J., J. M. Cooper, V. M. Darley-Usmar, S. Moncada, and A. H. V. Schapira. 1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345: 50–54.

    Article  PubMed  CAS  Google Scholar 

  89. Torres, J., V. Darley-Usmar, and M. T. Wilson. 1995. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem. J. 312: 169–173.

    PubMed  CAS  Google Scholar 

  90. Brown, G. C., J. P. Bolanos, S. J. R. Heales, and J. B. Clark. 1995. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci. Lett. 193: 201–204.

    Article  PubMed  CAS  Google Scholar 

  91. Takehara, Y., T. Kanno, T. Yoshioka, M. Inoue, and K. Utsumi. 1995. Oxygendependent regulation of mitochondrial energy metabolism by nitric oxide. Arch. Biochem. Biophys. 323: 27–32.

    Article  PubMed  CAS  Google Scholar 

  92. Brudvig, O. W., O. H. Stevens, and O. I. Chan. 1980. Reactions of nitric oxide with cytochrome oxidase. Biochemistry 19: 5275–5285.

    Article  PubMed  CAS  Google Scholar 

  93. Clarkson, R. B., S. W. Norby, A. Smirnov, S. Boyer, N. Vahidi, R. W. Nims, and D. A. Wink. 1995. Direct measurement of the accumulation and mitochondrial conversion of nitric oxide within Chinese hamster ovary cells using an intracellular electron paramagnetic resonance technique. Biochem. Biophys. Acta 1243: 496–502.

    Article  PubMed  Google Scholar 

  94. Zhao, X. J., V. Sampath, and W. W. Caughey. 1995. Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide. Biochem. Biophys. Res. Commun. 212: 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  95. Brown, G. C. 1995. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 369: 136–139.

    Article  PubMed  CAS  Google Scholar 

  96. McDonald, L. S., and J. Moss. 1993. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 90: 6238–6241.

    Article  PubMed  CAS  Google Scholar 

  97. Brüne, B., S. Dimmeler, L. M. Y. Vedia and E. G. Lapetina. 1994. Nitric oxide— a signal for ADP-ribosylation of proteins. Life Sci. 54: 61–70.

    Article  PubMed  Google Scholar 

  98. Crompton, M. 1985. The regulation of mitochondrial calcium transport in heart. Curr. Top. Membr. Transp. 25: 231–276.

    Article  CAS  Google Scholar 

  99. Richter, C., and B. Frei. 1988. Ca2+ release from mitochondria induced by prooxidants. Free Rad. Biol. Med. 4: 365–375.

    Article  PubMed  CAS  Google Scholar 

  100. Richter, C., and G. E. N. Kass. 1991. Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation, and differentiation. Chem. Biol. Interact. 77: 1–23.

    Article  PubMed  CAS  Google Scholar 

  101. Richter, C. 1992. Mitochondrial calcium transport, pp. 349–358. In N. Neuberger and L. L. M. Van Deenen (eds.), New Comprehensive Biochemistry Volume Molecular Mechanisms in Bioenergetics, L. Ernster (ed.). Elsevier, Amsterdam.

    Google Scholar 

  102. Lehninger, A. L., A. Vercesi, and E. A. Bababunmi. 1978. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc. Natl. Acad. Sci. USA 75: 1690–1694.

    Article  PubMed  CAS  Google Scholar 

  103. Lötscher, H. R., K. H. Winterhalter, E. Carafoli, and C. Richter. 1979. Hydroperoxides can modulate the redox state of mitochondrial pyridine nucleotides and the calcium balance in rat liver mitochondria. Proc. Natl. Acad. Sci. USA 76: 4340–4344.

    Article  PubMed  Google Scholar 

  104. Lötscher, H. R., K. H. Winterhalter, E. Carafoli, and C. Richter. 1980. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J. Biol. Chem. 255: 12579–12583.

    Google Scholar 

  105. Richter, C., and J. Schlegel. 1993. Mitochondrial Ca2+ release induced by prooxidants. Toxicol. Lett. 67: 119–127.

    Article  PubMed  CAS  Google Scholar 

  106. Schweizer, M., J. Schlegel, D. Baumgartner, and C. Richter. 1993. Sensitivity of mitochondrial peptidyl-prolyl cis-trans isomerase, pyridine nucleotide hydrolysis, and Ca2+ release to cyclosporine A and related compounds. Biochem. Pharmacol. 45: 641–646.

    Article  PubMed  CAS  Google Scholar 

  107. Schweizer, M., P. Durrer, and C. Richter. 1994. Phenylarsine oxide stimulates the pyridine nucleotide-linked Ca2+ release from rat liver mitochondria. Biochem. Pharmacol. 48: 967–973.

    Article  PubMed  CAS  Google Scholar 

  108. Schweizer, M., and C. Richter. 1994. Gliotoxin stimulates Ca2+ release from intact rat liver mitochondria. Biochemistry 33: 13401–13405.

    Article  PubMed  CAS  Google Scholar 

  109. Schweizer, M., and C. Richter. In press. Peroxynitrite stimulates the pyridine nucleotide-linked Ca2+ release from intact rat liver mitochondria. Biochemistry 35: 4524–4528.

    Google Scholar 

  110. Richter, C., V. Gogvadze, R. Laffranchi, R. Schlapbach, M. Schweizer, M. Suter, P. Walter, and M. Yaffee. 1995. Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta 1271: 67–74.

    Article  PubMed  Google Scholar 

  111. Laffranchi, R., V. Gogvadze, C. Richter, and G. A. Spinas. 1995. Nitric oxide (nitrogen monoxide, NO) stimulates insulin secretion by inducing calcium release from mitochondria. Biochem. Biophys. Res. Commun. 217: 584–591.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Richter, C., Laffranchi, R. (1997). Nitric Oxide Signaling Through Mitochondrial Calcium Release. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics