Skip to main content

Gene Expression of DT-Diaphorase in Cancer Cells

  • Chapter

Abstract

NQOs are flavoproteins that catalyze the obligatory two-electron reductive metabolism and detoxification of quinones and its derivatives.1,2 Several reports indicate the presence of two or more isozymic forms of NQOs in the rat, mouse, and human liver.1,2 In humans, genetic evidence indicates that the different forms of NQOs are encoded by four gene loci.3 Two of these loci (designated as NQO1 and NQO2) have been cloned and sequenced.4-7 NQO1 activity has also been cloned from the rat and mouse liver.8-11 Among various NQOs, NQO1 is the beststudied enzyme. NQO1 is a cytosolic protein, occurs as a dimer in vivo, is made up of two homomonomeric subunits with individual molecular weights of 32 kDa, requires NADH or NADPH as a cofactor for the enzymatic activity, and is strongly inhibited by low concentrations of dicoumarol.12-15 Both the human and rat cDNA encode for a protein of 274 residues.4 The NQO1 protein is shown to metabolize 2,6-dichlorophenolindophenol, menadione, vitamin K, benzo(α)-pyrene-3,6-quinone, 2,6-dimethylbenzoquinone, methylene blue, p-benzoquinone, 1,4-naphthoquinone, 2-methyl-l,4-benzoquinone, and several other quinones with high affinity.12,13,16 The second isoenzymic form of the NQO (designated as NQO2) was recently identified by cDNA cloning from human liver.5 The human NQO2 cDNA and protein are 54 and 49% similar to human liver cytosolic NQO1 cDNA and protein, respectively.5 The initiation codon (ATG) of the NQO2 cDNA aligns perfectly with the initiation codons of human and rat NQO1 cDNAs.5,17 However, the NQO2-encoded protein is 43 amino acids shorter at the carboxy terminal end as compared to that of NQO1 and failed to catalyze high-affinity reduction of 2,6-dichlorophenolindophenol and menadione. Interestingly, both proteins were equally active in catalyzing the nitroreduction of antitumor drug CB10-200.7

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riley, R. J., and P. Workman. 1992. DT-diaphorase and cancer chemotherapy. Biochem. Pharmacol. 43: 1657–1669.

    Article  PubMed  CAS  Google Scholar 

  2. Joseph, P., T. Xie, Y. Xu, and A. K. Jaiswal. 1994. NAD(P)H:quinone oxidoreductase1 (DT diaphorase): expression, regulation, and role in cancer. Oncol. Res. 6: 525–532.

    PubMed  CAS  Google Scholar 

  3. Edwards, Y. H., J. Potter, and D. A. Hopkinson. 1980. Human FAD-dependent NAD(P)H diaphorase. Biochem. J. 187: 429–436.

    PubMed  CAS  Google Scholar 

  4. Jaiswal, A. K., O. W. McBride, M. Adesnik, and D. W. Nebert. 1988. Human dioxin-inducible cytosolic NAD(P)H:Quinone oxidoreductase. J. Biol. Chem. 263: 13572–13578.

    PubMed  CAS  Google Scholar 

  5. Jaiswal, A. K., P. Burnett, M. Adesnik, and O. W. McBride. 1990. Nucleotide and deduced amino acid sequence of a human cDNA (NQO2) corresponding to a second member of the NAD(P)H:quinone oxidoreductase gene family. Extensive polymorphism at the NQO2 gene locus on chromosome 6. Biochemistry 29: 1899–1906.

    Article  PubMed  CAS  Google Scholar 

  6. Jaiswal, A. K. 1991. Human NAD(P)H:quinone oxidoreductase gene structure and induction by dioxin. Biochemistry 30: 10647–10653.

    Article  PubMed  CAS  Google Scholar 

  7. Jaiswal, A. K., 1994. Human NAD(P)H:quinone oxidoreductase2: gene structure, activity, and tissue-specific expression. J. Biol. Chem. 269: 14502–14508.

    PubMed  CAS  Google Scholar 

  8. Williams, J. B., A. Y. H. Lu, R. G. Cameron, and C. B. Pickett. 1986. Rat liver NAD(P)H:quinone reductase. J. Biol. Chem. 261: 5524–5528.

    PubMed  CAS  Google Scholar 

  9. Robertson, J. A., H. C. Chen, and D. W. Nebert. 1986. NAD(P)H:menadione oxidoreductase: novel purification of enzyme. cDNA and complete amino acid sequence and gene regulation. J. Biol. Chem. 261: 15794–15799.

    PubMed  CAS  Google Scholar 

  10. Vasiliou, V., M. J. Theurer, A. Puga, S. F. Reuter, and D. W. Nebert. 1994. Mouse dioxin-inducible NAD(P)H:menadione oxidoreductase: NM01 cDNA sequence and genetic differences in mRNA(—) levels. Pharmacogenetics 4: 341–348.

    Article  PubMed  CAS  Google Scholar 

  11. Bayney, R. M., M. R. Morton, L. V. Favreau, and C. B. Pickett. 1989. Rat liver NAD(P)H:quinone reductase: regulation of quinone reductase gene expression by planar aromatic compounds and determination of the exon structure of the quinone reductase structural gene. J. Biol. Chem. 264: 21793–21797.

    PubMed  CAS  Google Scholar 

  12. Ernster, L. 1967. DT-diaphorase. Methods Enzymol. 10: 309–317.

    Article  CAS  Google Scholar 

  13. Amzel, L. M., S. H. Bryant, H. J. Prochaska, and P. Talalay. 1986. Preliminary crystallographic X-ray data for NAD(P)H:quinone reductase from mouse liver. J. Biol. Chem. 261: 1379.

    PubMed  CAS  Google Scholar 

  14. Shaw, P. M., A. Reiss, M. Adesnik, D. W. Nebert, J. Schembri, and A. K. Jaiswal. 1991. The human dioxin-inducible NAD(P)H:quinone oxidoreductase cDNA-en-coded protein expressed in COS-1 cells is identical to diaphorase 4. Eur. J. Biochem. 195: 171–176.

    Article  PubMed  CAS  Google Scholar 

  15. Li, R., M. A. Bianchet, P. Talalay, and L. M. Amzel. 1995. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc. Natl. Acad. Sci USA 92: 8846–8850.

    Article  PubMed  CAS  Google Scholar 

  16. Joseph, P., and A. K. Jaiswal. 1994. NAD(P)H:quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo(α)pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase. Proc. Natl. Acad. Sci. USA 91: 8413–8417.

    Article  PubMed  CAS  Google Scholar 

  17. Belinsky, M., and A. K. Jaiswal. 1993. NAD(P)H:quinone oxidoreductase1 (DT diaphorase) expression in normal and tumor tissues. Cancer Metast. Rev. 12: 103–117.

    Article  CAS  Google Scholar 

  18. Monks, T. J., R. P. Hanzlik, G. M. Cohen, D. Ross and D. G. Graham. 1992. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 112: 2–16.

    Article  PubMed  CAS  Google Scholar 

  19. Lind, C., P. Hochstein, and L. Ernster. 1982. DT-diaphorase: properties, reaction mechanism, metabolic function. A progress report. In T. E. King, H. S. Mason, and M. Morrison (eds.), Oxidases and Related Redox Systems. Pergamon Press, Oxford. 321–347.

    Google Scholar 

  20. Thor, H., M. T. Smith, P. Hartzell, G. Bellomo, S. Jewell, and S. Orrenius. 1982. The metabolism of menadione (2-methyl-l,4-naphthoquinone) by isolated hepatocytes. J. Biol. Chem. 257: 12419–12425.

    PubMed  CAS  Google Scholar 

  21. Ernster, L. 1987. DT-diaphorase: a historical review. Chem. Scripta 27A: 1–13.

    CAS  Google Scholar 

  22. Prochska, H. J., P. Talalay, and H. Sies. 1987. Direct protective effect of NAD(P)H: quinone reductase against menadione-induced chemiluminescence of postmitochondrial fractions of mouse liver. J. Biol. Chem. 262: 1931–1934.

    Google Scholar 

  23. Joseph, P., Y. Xu, and A. K. Jaiswal. 1995. Non-enzymatic and enzymatic activation of mitomycin C: identification of a unique cytosolic activity. Int. J. Cancer 65: 263–271.

    Article  Google Scholar 

  24. Talalay, P. 1989. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv. Enzyme Reg. 28: 149–159.

    Article  Google Scholar 

  25. Chesis, P. L., D. E. Levin, M. T. Smith, L. Ernster, and B. N. Ames. 1984. Mutagenicity of quinones: pathways of metabolic activation and detoxification. Proc. Natl Acad. Sci. USA 81: 1696–1700.

    Article  PubMed  CAS  Google Scholar 

  26. Lind, C. 1985. Formation of benzo(a)pyrene-3,6-quinol mono-and diglucuronides in rat liver microsomes. Arch. Biochem. Biophy. 280: 226–235.

    Article  Google Scholar 

  27. De Flora, A. 1985. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium (VI) and reverting its mutagenicity. Cancer Res. 45: 3188–3196.

    PubMed  Google Scholar 

  28. Joseph, P., and A. K. Jaiswal. 1996. Mutagenicity of benzo(α)pyrene quinones: role of specific reductases. Abstract SOT.

    Google Scholar 

  29. Talalay, P., M. J. De Long, and H. J. Prochaska. 1989. Molecular mechanisms in protection against carcinogenesis, pp. 197–182. In J. G. Cory and A. Szentivanyi (eds.), Cancer Biology, Plenum, New York. 197-216.

    Google Scholar 

  30. Talalay, P., J. W. Fahey, W. D. Holtzclaw, T. Prestera and Y. Zhang. 1995. Chemoprotection against cancer by phase 2 enzyme induction. Toxicol. Lett. 82-83: 173–179.

    Article  PubMed  CAS  Google Scholar 

  31. Wattenberg, L. W. 1972. Inhibition of carcinogenic and toxic effects of polycyclic aromatic hydrocarbons by phenolic antioxidants and ethoxyquin. J Natl. Cancer Inst. 48: 1425–1430.

    PubMed  CAS  Google Scholar 

  32. Zhang, Y., T. W. Kensler, C. Cho, G. H. Posner, and P. Talalay. 1994. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl Acad. Sci. USA 91: 3147–3150.

    Article  PubMed  CAS  Google Scholar 

  33. Jaiswal, A. K. 1994. Antioxidant response element. Biochem. Pharmacol 48: 439–444.

    Article  PubMed  CAS  Google Scholar 

  34. Nebert, D. W. 1994. Drug-metabolizing enzymes in ligand-modulated transcription. Biochem. Pharmacol. 47: 25–37.

    Article  PubMed  CAS  Google Scholar 

  35. Pickett, C. B., and A. Y. H. Lu. 1989. Glutathione S-transferases: gene structure, regulation and biological function. Annu. Rev. Biochem. 58: 743–764.

    Article  PubMed  CAS  Google Scholar 

  36. Tsuchida, S., and K. Sato. 1992. Glutathione transferases and cancer. Crit. Rev. Biochem. Mol. Biol. 27: 337–384.

    Article  PubMed  CAS  Google Scholar 

  37. Rushmore, T. H., and C. B. Pickett. 1993. Glutathione S-transferases, structure, regulation and therapeutic implications. J. Biol. Chem. 268: 11475–11478.

    PubMed  CAS  Google Scholar 

  38. Tephly, T., and B. Burchell. 1990. UDP-glucuronosyl transferases: a family of detoxifying enzymes. Trends Pharmacol. 11: 276–279.

    Article  CAS  Google Scholar 

  39. Kashfl, K., E. K. Yang, J. R. Chowdhury, N. R. Chowdhary and A. J. Dannenberg. 1994. Regulation of uridine diphosphate glucuronosyltransferase expression by phenolic antioxidants. Cancer Res. 54: 5856–5859.

    Google Scholar 

  40. Oesch, F., I. Gath, T. Igarashi, H. R. Glatt, and H. Thomas. 1991. Epoxide hydolases, pp. 447–461. In E. Arinc, J. B. Schenkman, and E. Hodgson (eds.), Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds. Plenum Press, New York.

    Chapter  Google Scholar 

  41. Meister, A. and M. E. Anderson. Glutathione. 1983. Annu. Rev. Biochem. 52: 711–760.

    Article  PubMed  CAS  Google Scholar 

  42. Talcott, R. E., M. Rosenblum, and V. A. Levin. 1983. Possible role of DT-diaphorase in the bioactivation of anti-tumor quinones. Biochem. Biophys. Res. Commun. 11: 346–351.

    Article  Google Scholar 

  43. De Flora, S., C. Bernnicelli, A. Camoirano, D. Serra, and P. Hochstein. 1988. Influence of DT diaphorase on the mutagenicity of organic and inorganic compounds. Carcinogenesis 9: 611–617.

    Article  PubMed  Google Scholar 

  44. Cadenas, E. 1995. Antioxidant and pro-oxidant functions of DT diaphorase in quinone metabolism. Biochem. Pharmacol. 49: 127–140.

    Article  PubMed  CAS  Google Scholar 

  45. Workman, P. 1994. Enzyme-directed bioreductive drug development revisited: a commentary on recent progress and future prospects with emphasis on quinone anticancer agents and quinone metabolizing enzymes, particularly DT-diaphorase. Oncol. Res. 6: 461–475.

    PubMed  CAS  Google Scholar 

  46. Ross, D., H. Beall, R. D. Traver, D. Siegel, R. M. Phillips, and N. W. Gibson. 1994. Bioactivation of quinones by DT-diaphorase, molecular, biochemical, and chemical studies. Oncol Res. 6: 493–500.

    PubMed  CAS  Google Scholar 

  47. Verweij, J., and H. H. Pinedo. 1990. Mitomycin C., pp. 63–73. In H. M. Pinedo, B. A. Cabner, and D. L. Longo (eds.), Cancer Chemotherapy and Biological Modifyers. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  48. Iyer, V. N., and W. Szybalski. 1963. A molecular mechanism of mitomycin C action: linking of complementary DNA strands. Proc. Natl Acad. Sci. USA 50: 355–362.

    Article  PubMed  CAS  Google Scholar 

  49. Iyer, V. N., and Szybalski W. 1964. Mitomycins and porfiromycin: chemical mechanism of activation and cross-linking of DNA. Science 145: 55–58.

    Article  PubMed  CAS  Google Scholar 

  50. Robertson, N., I. J. Stratford, S. Houlbrook, J. Carmichael, and G. E. Adams. 1992. The sensitivity of human tumor cells to quinone bioreductive drugs: what role for DT-diaphorase? Biochem. Pharmacol. 44: 409–412.

    Article  PubMed  CAS  Google Scholar 

  51. Schlager, J. J., and G. Powis. 1988. Mitomycin C is not metabolized by but is an inhibitor of human kidney NAD(P)H:(quinone acceptor) oxidoreductase, Cancer Chemother. Pharmacol. 22: 126–130.

    CAS  Google Scholar 

  52. Plumb, J. A., and P. Workman. 1994. Unusually marked hypoxic sensitization to indoloquinone EO9 and mitomycin C in a human colon-tumour cell line that lacks DT diaphorase activity. Int. J. Cancer 56: 134–139.

    Article  PubMed  CAS  Google Scholar 

  53. Ross, D., D. Siegel, H. Beall, A. S. Prakash, T. Mulcahy, and N. Gibson. 1993. DT diaphorase in activation and detoxification of quinones. Cancer Metast. Rev. 12: 83–101.

    Article  CAS  Google Scholar 

  54. Siegel, D., H. Beall, C. Senekowitsch, M. Kasai, H. Arai, N. W. Gibson, and D. Ross. 1992. Bioreductive activation of mitomycin C by DT-diaphorase. Biochemistry 31: 7879–7885.

    Article  PubMed  CAS  Google Scholar 

  55. Ernster, L., and F. Navazio. 1958. Soluble diaphorases in animal tissues. Acta Chem. Scand. 12: 595, 1958.

    Article  CAS  Google Scholar 

  56. Martin, L. F., S. D. Patrick, and R. Wallin. 1987. DT-diaphorase in morbidly obese patients. Cancer Lett. 36: 341–347.

    Article  PubMed  CAS  Google Scholar 

  57. Philips, R. M., P. B. Hulbert, M. C. Bibbey, N. R. Sleigh, and J. A. Double. 1992. In vitro activity of the novel indoloquinone EO9 and the influence of pH on cytotoxicity. Br. J. Cancer 65: 359–364.

    Article  Google Scholar 

  58. Smitskamp-Wilms, E., G. J. Peters, H. M. Pinedo, J. VanArk-Otte, and G. Giaccone. 1994. Chemosensitivity to the indoloquinone EO9 is correct with DT-diaphorase activity and its gene expression. Biochem. Pharmacol. 47: 1325–1332.

    Article  PubMed  CAS  Google Scholar 

  59. Plumb, J. A., M. Gerritsen, and P. Workman. 1994. DT-diaphorase protects cells from the hypoxic cytotoxicity of indoloquinone EO9. Br. J. Cancer 70: 1136–1143.

    Article  PubMed  CAS  Google Scholar 

  60. Robertson, N., A. Haigh, G. E. Adams, and I. J. Stratford. 1994. Factors affecting the sensitivity to EO9 in rodent and human tumor cells in vitro: DT-diaphorase and hypoxia. Eur. J. Cancer 30A: 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  61. Koudstaal, J., B. Makkins, and S. H. Overdiep. 1975. Enzyme histochemical pattern in human tumors-II. Oxidoreductases in carcinoma of colon and breast. Eur. J. Cancer 11: 111–115.

    Article  PubMed  CAS  Google Scholar 

  62. Schor, N. A., and C. J. Cornelisse. 1983. Biochemical and quantitative histochemical study of reduced pyridine nucleotide dehydrogenation by human colon carcinomas. Cancer Res. 43: 4850–4855.

    PubMed  CAS  Google Scholar 

  63. Schlager, J. J., and G. Powis. 1990. Cytosolic NAD(P)H:(quinone-acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int. J. Cancer 45: 403–409.

    Article  PubMed  CAS  Google Scholar 

  64. Cresteil, T., and A. K. Jaiswal. 1991. High levels of expression of the NAD(P)H: quinone oxidoreductase (NQO1) gene in tumor cells compared to normal cells of the same origin. Biochem. Pharmacol. 42: 1021–1027.

    Article  PubMed  CAS  Google Scholar 

  65. Favreau, L. V., and C. B. Pickett. 1991. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J. Biol. Chem. 266: 4556–4561.

    PubMed  CAS  Google Scholar 

  66. Li, Y., and A. K. Jaiswal. 1992. Regulation of human NAD(P)H:quinone oxidoreductase gene: role of API binding site contained within human antioxidant response element. J. Biol. Chem. 267: 15097–15104.

    PubMed  CAS  Google Scholar 

  67. Li, Y., and A. K. Jaiswal. 1992. Identification of Jun-B as third member in human antioxidant response element-nuclear protein complex. Biochem. Biophys. Res. Commun. 188: 992–996.

    Article  PubMed  CAS  Google Scholar 

  68. Li, Y., and A. K. Jaiswal. 1994. Human antioxidant response element mediated regulation of type 1 NAD(P)H:quinone oxidoreductase gene expression: effect of sulfhydryl modifying agents. Eur. J. Biochem. 226: 31–39.

    Article  PubMed  CAS  Google Scholar 

  69. Prestera, T., W. D. Holtzclaw, Y. Zhang, and P. Talalay. 1993. Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc. Natl. Acad. Sci. USA 90: 2965–2969.

    Article  PubMed  CAS  Google Scholar 

  70. Yoshioka, K., T. Deng, M. Cavigelli, and M. Karin. 1995. Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc. Natl. Acad. Sci. USA 92: 4972–4976.

    Article  PubMed  CAS  Google Scholar 

  71. Favreau, L. V., and C. B. Pickett. 1993. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Characterization of a DNA-protein interaction at the antioxidant responsive element and induction by 12-O-tetradecanoylphorbol 13-acetate. J. Biol. Chem. 268: 19875-19881.

    Google Scholar 

  72. Mulcahy, R. T., and J. J. Gipp. 1995. Identification of a putative antioxidant response element in the 5′ flanking region of the human γ-glutamylcysteine synthetase heavy subunit gene. Biochem. Biophys. Res. Communun. 209: 227–233.

    Article  CAS  Google Scholar 

  73. Xie, T., M. Belinsky, Y. Xu, and A. K. Jaiswal. 1995. ARE-and TRE-mediated regulation of gene expression: response to xenobiotics and antioxidants. J. Biol. Chem. 270: 6894–6900.

    Article  PubMed  CAS  Google Scholar 

  74. Rushmore, T. H., R. G. King, K. E. Paulson, and C. B. Pickett. 1990. Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc. Natl. Acad. Sci. USA 87: 3826–3830.

    Article  PubMed  CAS  Google Scholar 

  75. Rushmore, T. H., and C. B. Pickett. 1990. Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene: characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J. Biol. Chem. 265: 14648–14653.

    PubMed  CAS  Google Scholar 

  76. Rushmore, T. H., M. R. Morton, and C. B. Pickett. 1991. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266: 11632–11639.

    PubMed  CAS  Google Scholar 

  77. Nguyen, T., T. H. Rushmore, and C. B. Pickett. 1994. Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. J. Biol. Chem. 269: 13656–13662.

    PubMed  CAS  Google Scholar 

  78. Friling, R. S., A. Bensimon, Y. Tichauer, and V. Daniel. 1990. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. USA 87: 6258–6262.

    Article  PubMed  CAS  Google Scholar 

  79. Friling, R. S., S. Bergelson, and V. Daniel. 1992. Two adjacent AP-1-like binding sites form the electrophile responsive element of the murine glutathione S-transferase Ya subunit gene. Proc. Natl. Acad. Sci. 89: 668–672.

    Article  PubMed  CAS  Google Scholar 

  80. Sakai, M., A. Okuda, and M. Muramatsu. 1988. Multiple regulatory elements and phorbol 12-O-tetradecanoate 13-acetate responsiveness of the rat placental glutathione transferase gene. Proc. Natl. Acad. Sci. USA 85: 9456–9460.

    Article  PubMed  CAS  Google Scholar 

  81. Okuda, A., M. Imagawa, Y. Maeda, M. Sakai, and M. Muramatsu. 1990. Functional co-operativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells. EMBO J. 9: 1131–1135.

    PubMed  CAS  Google Scholar 

  82. Prestera, T., and P. Talalay. 1995. Electrophile and antioxidant regulation of enzyme that detoxify carcinogens. Proc. Natl. Acad. Sci. USA 92: 8965–8969.

    Article  PubMed  CAS  Google Scholar 

  83. Diccianni, M. B., M. Imagawa, and M. Muramatsu. 1992. The dyad palindromic glutathione transferase P enhancer binds multiple factors including API. Nucleic Acids Res. 20: 5153–5158.

    Article  PubMed  CAS  Google Scholar 

  84. Suzuki, S., K. Satoh, H. Nakano, I. Hatayama, K. Sato, and S. Tsuchida. 1995. Lack of correlated expression between the glutathione S-transferase P-form and the oncogene products c-Jun and c-Fos in rat tissues and preneoplastic hepatic foci. Carcinogenesis 16: 567–571.

    Article  PubMed  CAS  Google Scholar 

  85. Nguyen, T., and C. B. Pickett. 1992. Regulation of rat glutathione-S-transferase Ya subunit gene expression: DNA-protein interaction at the antioxidant response element. J. Biol. Chem. 267: 13535–13539.

    PubMed  CAS  Google Scholar 

  86. Jaiswal, A. K. In press. Antioxidant responses and regulation of gene expression. In D. Massaro (ed.). Oxygen, Gene Expression. Marcel Dekker, New York.

    Google Scholar 

  87. Oridate, N., S. Nishi, Y. Inuyama, and M. Sakai. 1994. Jun and Fos related gene products bind to and modulate the GPE I, a strong enhancer element of the rat glutathione transferase P gene. Biochem. Biophys. Acta 1219: 499–504.

    Article  PubMed  CAS  Google Scholar 

  88. Halliwell, B., and J. M. C. Gutteridge. 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

    Google Scholar 

  89. De Long, M. J., A. B. Santamaria, and P. Talalay. 1987. Role of cytochrome P1 450 in the induction of NAD(P)H:quinone reductase in a murine hepatoma cell line and its mutants. Carcinogenesis 8: 1549–1553.

    Article  PubMed  Google Scholar 

  90. Pahl, H. L., and P. A. Baeuerle. 1994. Oxygen and the control of gene expression. Bioessays 16: 497–502.

    Article  PubMed  CAS  Google Scholar 

  91. Demple, B., and C. F. Amabile-Cuevas. 1991. Redox redux: the control of oxidative stress responses. Cell 67: 837–839.

    Article  PubMed  CAS  Google Scholar 

  92. Li, Z., and B. Demple. 1994. Sox S, an activator of Superoxide stress genes in Escherichia coli: purification and interaction with DNA. J. Biol. Chem. 269: 18371–18377.

    PubMed  CAS  Google Scholar 

  93. Toledano, M. B., I. Kullik, F. Trinh, P. T. Baird, T. D. Schneider, and G. Storz. 1994. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78: 887–909.

    Article  Google Scholar 

  94. Zitomer, R. S., and C. V. Lowry. 1992. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev. 56: 1–11.

    PubMed  CAS  Google Scholar 

  95. Kuge, S., and N. Jones. 1994. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13: 655–664.

    PubMed  CAS  Google Scholar 

  96. Jungmann, H., H. A. Reins, J. Lee, A. Romeo, R. Hassett, D. Kosman, and S. Jentsch. 1993. Mac-1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved ion Cu/Fe utilization and stress resistance in yeast. EMBO J. 12: 5051–5056.

    PubMed  CAS  Google Scholar 

  97. Schreck, R., and P. A. Baeuerle. 1994. Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-κB. Methods Enzymol. 234: 151–163.

    Article  PubMed  CAS  Google Scholar 

  98. Meyer, M., R. Schreck, and P. Baeuerle. 1993. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12: 2005–2015.

    PubMed  CAS  Google Scholar 

  99. Pinkus, R., L. M. Weiner, and V. Daniel. 1995. Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione S-transferase gene expression. Biochemistry 34: 81–88.

    Article  PubMed  CAS  Google Scholar 

  100. Bergelson, S., R. Pinkus, and V. Daniel. 1994. Induction of API (Fos/Jun) by chemical agents mediates activation of glutathione S-transferase and quinone reductase gene expression. Oncogene 9: 565–571.

    PubMed  CAS  Google Scholar 

  101. Bergelson, S., R. Pinkus, and V. Daniel. 1994. Intracellular glutathione levels regulate Fos/Jun induction and activation of glutathione S-transferase gene expression. Cancer Res. 54: 36–40.

    PubMed  CAS  Google Scholar 

  102. Abate, C., L. Patel, F. J. Rauscher III, and T. Curran. 1990. Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 249: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  103. Xanthoudakis, S., and T. Curran. 1992. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA binding activity. EMBO J. 11: 653–665.

    PubMed  CAS  Google Scholar 

  104. Xanthoudakis, S., G. Miao, F. Wang, Y. E. Pan, and T. Curran. 1992. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 11: 3323–3335.

    PubMed  CAS  Google Scholar 

  105. Whitlock, J. P. 1993. Mechanistic aspects of dioxin action. Chem. Res. Toxicol. 6: 754–763.

    Article  PubMed  CAS  Google Scholar 

  106. Rao, G. N., B. Lasségue, K. K. Griendling, R. W. Alexander, and B. C. Berk. 1993. Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Res. 21: 1259–1263.

    Article  PubMed  CAS  Google Scholar 

  107. Puga, A., D. W. Nebert, and F. Carrier. 1992. Dioxin induces expression of c-fos and c-jun proto-oncogenes and a large increase in transcription factor API. DNA Cell Biol. 11: 269–281.

    Article  PubMed  CAS  Google Scholar 

  108. Xie, T., and A. K. Jaiswal. 1996. AP-2-mediated regulation of human NAD(P)H: quinone oxidoreductase1 (NQO1) gene expression. Biochem. Pharmacol. 51: 771–778.

    Article  PubMed  CAS  Google Scholar 

  109. Yao, K. S., and P. J. Odwyer. 1995. Involvement of NF-κB in the induction of NAD(P)H:quinone oxidoreductase (DT diaphorase) by hypoxia, oltipraz and mitomycin C. Biochem. Pharmacol. 49: 275–282.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Radjendirane, V., Joseph, P., Jaiswal, A.K. (1997). Gene Expression of DT-Diaphorase in Cancer Cells. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics