Skip to main content

Oxyradicals as Signal Transducers

  • Chapter
Oxidative Stress and Signal Transduction

Abstract

Control of the balance between the life and death of cells is crucial to the proper development of tissues and organs. The proliferation of cells is highly orchestrated with a complexity of molecular checks and balances, but a cell that will not stop dividing presents problems as it can become a tumor. In contrast, a genetically programmed cell death mechanism, apoptosis, regulates cell numbers and is a means whereby unwanted or potentially harmful cells are eliminated. Accurate control of cellular life and death involves a plethora of molecular signals and switches, and an essential aspect is how these are activated and terminated at precisely the correct moment.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartwell, A. W., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246: 614–634.

    Article  Google Scholar 

  2. Nigg, E. A. 1993. Targets of cyclin-dependent protein kinases. Curr. Opin. Cell Biol. 5: 187–193.

    Article  PubMed  CAS  Google Scholar 

  3. Sherr, C. J. 1993. Mammalian GI cyclins. Cell 73: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  4. Murray, A. W., M. J. Solomon, and M. W. Kirschner. 1989. The role of cyclin synthesis and degradation in the control of maturation promoting activity. Nature 339: 280–286.

    Article  PubMed  CAS  Google Scholar 

  5. Cross, M., and T. M. Dexter. 1991. Growth factors in development, transformation and tumorigenesis. Cell 64: 271–280.

    Article  PubMed  CAS  Google Scholar 

  6. Berridge, M. J. 1984. Inositol trisphosphate and diacycl glycerol as second messengers. Biochem. J. 220: 345–360.

    PubMed  CAS  Google Scholar 

  7. Friessmuth, M., P. J. Casey, and A. G. Gilman. 1989. G-proteins control diverse pathways of transmembrane signalling. FASEB J 3: 2125–2131.

    Google Scholar 

  8. Farago, A. and Y. Nishizuka. 1990. Protein kinase C in transmembrane signalling. FEBS Lett. 268: 350–354.

    Article  PubMed  CAS  Google Scholar 

  9. Dumont, J. E. 1989. The cAMP mediated stimulation of cell proliferation. Trends Biochem. Sci. 15: 153–158.

    Google Scholar 

  10. Pazin, M. J., and L. T. Williams. 1992. Triggering signalling cascades by receptor tyrosine kinases. Trends Biochem. Sci. 17: 374–378.

    Article  PubMed  CAS  Google Scholar 

  11. Ihle, J. M., B. A. Witthuhn, F. W. Quelle, K. Yamamoto, W. E. Thierfelder, B. Kreider and O. Silvennoinen. 1994. Signalling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem. Sci. 19: 222–227.

    Article  PubMed  CAS  Google Scholar 

  12. Naeve, G. S., A. Sharma, and A. S. Lee. 1991. Temporal events regulating the early phases of the mammalian cell cycle. Curr. Opin. Cell Biol. 3: 261–268.

    Article  PubMed  CAS  Google Scholar 

  13. Evan, G. I., and T. D. Littlewood. 1993. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3: 44–49.

    Article  PubMed  CAS  Google Scholar 

  14. Cobrink, D., S. F. Dowdy, P. W. Hinds, S. Mittnacht, and R. A. Weinberg. 1992. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem. Sci. 17: 312–315.

    Article  Google Scholar 

  15. Chernova, O. B., M. V. Chernov, M. L. Agarwal, W. R. Taylor, and G. R. Stark. 1995. The role of p53 in regulating genomic stability when DNA and RNA synthesis are inhibited. Trends Biochem. Sci. 20: 431–434.

    Article  PubMed  CAS  Google Scholar 

  16. Collins, M. K. L., and A. L. Rivas. 1993. The control of apoptosis in mammalian cells. Trends Biochem. Sci. 18: 307–309.

    Article  PubMed  CAS  Google Scholar 

  17. Rees, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124: 1–6.

    Article  Google Scholar 

  18. Vaux, D., S. Cory, and J. Adams. 1988. Bcl-2 gene promotes heamopoetic cell survival and co-operates with c-myc to immortalize pre-B cells. Nature 335: 440–442.

    Article  PubMed  CAS  Google Scholar 

  19. Askew, D., R. Ashmun, B. Simmons, and J. Cleveland. 1992. Constitutive c-myc expression in an IL-3 dependent myeloid cell line suppressed cell cycles arrest and accelerates apoptosis. Oncogene 6: 1915–1922.

    Google Scholar 

  20. Evan, G. I., A. H. Wyllie, C. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, C. M. Waters, L. Z. Penn, and D. C. Hancock. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.

    Article  PubMed  CAS  Google Scholar 

  21. Shi, Y., R. Bisonette, J. Glynn, L. Guilbert, T. Cotter, and D. Green. 1992. Rok for c-myc in activation-induced apoptotic death in T-cell hybridomas. Science 257: 212–214.

    Article  PubMed  CAS  Google Scholar 

  22. Bisonette, R., F. Echeverri, A. Mahboudi, and D. Green. 1992. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359: 552–554.

    Article  Google Scholar 

  23. Smeye, R., M. Vendrell, M. Hayward, S. Barker, G. Mison, K. Schilling, L. Robertson, T. Curran, and J. Morgan. 1993. Continuous c-fos expression precedes programmed cell death in vivo. Nature 363: 168–169.

    Google Scholar 

  24. Lowe, S., E. Schmitt, S. Smith, B. Osborne, and T. Jacks. 1993. p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 363: 847–849.

    Article  Google Scholar 

  25. Enoch, T., and C. Norbury. 1995. Cellular responses to DNA damage: cell cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem. Sci. 20: 426–430.

    Article  PubMed  CAS  Google Scholar 

  26. Burdon, R. H., and C. Rice-Evans. 1989. Free radicals and the regulation of mammalian cell proliferation. Free Rad. Res. Commun. 6: 345–358.

    Article  CAS  Google Scholar 

  27. Burdon, R. H., V. Gill, and C. Rice-Evans. 1990. Cell proliferation and oxidative stress. Free Rad. Res. Commun. 7: 149–159.

    Article  Google Scholar 

  28. Burdon, R. H., V. Gill, and C. Rice-Evans. 1990. Oxidative stress and tumour cell proliferation. Free Rad. Res. Commun. 11: 65–76.

    Article  CAS  Google Scholar 

  29. Murrell, G. A. C., M. J. O. Francis, and L. Bromley. 1990. Modulation of fibroblast proliferation by oxygen free radicals. Biochem. J. 265: 659–665.

    PubMed  CAS  Google Scholar 

  30. Shibanuma, M., T. Kuroki, and M. Nose. 1988. Induction of DNA replication and expression of protooncogenes c-myc and c-fos in quiescent Balb/3T3 cells by xanthine-xanthine oxidase. Oncogene 3: 17–21.

    CAS  Google Scholar 

  31. Ikebuchi, Y., K. Masumoto, K. Tasaka, K. Kuike, K. Kashahara, A. Miyake, and O. Tanizawa. 1991. Superoxide anion increases intracellular pH, intracellular free calcium and arachidonate release in human amnion cells. J. Biol. Chem. 266: 13233–13237.

    PubMed  CAS  Google Scholar 

  32. Crawford, D., I. Zbinden, P. Amstad, and P. Cerutti. 1989. Oxidant stress induces the protooncogenes c-fos and c-myc in mouse epidermal cells. Oncogene 3: 27–32.

    Google Scholar 

  33. Shibanuma, M., T. Kuroki, and K. Nose. 1988. Superoxide as a signal for increase in intracellular pH. J. Cell. Physiol. 136: 379–383.

    Article  PubMed  CAS  Google Scholar 

  34. Craven, P. A., J. Pfanstiel, and F. R. DeRobertis. 1986. Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J. Clin. Invest. 77: 850–859.

    Article  PubMed  CAS  Google Scholar 

  35. Nose, K., M. Shibanuma, K. Kikuchi, H. Kazeyana, S. Sakiyama, and T. Kuroki. 1991. Transcriptional activities of early response genes in a mouse osteoblastic cell line. Fur. J. Biochem. 201: 99–106.

    CAS  Google Scholar 

  36. Shibanuma, M., T. Kuroki, and J. K. Nose. 1990. Stimulation by hydrogen peroxide of DNA synthesis competence family gene expression and phosphorylation of a specific protein in quiescent Balb/3T3 cells. Oncogene 3: 27–32.

    Google Scholar 

  37. Stirpe, F., T. Higgins, P. L. Tazzori, and E. Rozengurt. 1991. Stimulation by xanthine oxidase of 3T3 Swiss fibroblasts and human lymphocytes. Exp. Cell Res. 192: 635–638.

    Article  PubMed  CAS  Google Scholar 

  38. Hannigan, B. M., S. Ranjibar, and L. Crombie. 1994. The effect of reactive oxygen species (ROS) on human T and lymphoid cells, pp. 59–63. In C. Pasquier, R. Y. Olivier, C. Auclair and L. Packer, (eds.), Oxidative Stress, Cell Activation and Viral Infection. Birkhauser Verlag, Basel.

    Chapter  Google Scholar 

  39. Test, T., and S. J. Weiss. 1984. Quantitative and temporal characteristics of the extracellular H2O2 pool generated by human neutrophils. J. Biol Chem. 259: 399–405.

    PubMed  CAS  Google Scholar 

  40. Meier, B., H. H. Radeke, S. Selle, M. Younes, H. Seis, K. Resch, and G. G. Habermehl. 1989. Human fibroblasts release active oxygen species in response to interleukin-1 or tumour necrosis factor-a. Biochem. J. 263: 539–545.

    PubMed  CAS  Google Scholar 

  41. Meier, B., A. R. Cross, J. T. Hancock, F. Kamp, and O. T. G. Jones. 1991. Identification of a Superoxide generating NADPH-oxidase system in human fibroblasts. Biochem. J. 275: 241–245.

    PubMed  CAS  Google Scholar 

  42. Matsubara, T., and M. Ziff. 1986. Increased Superoxide anion release from endothelial cells in response to cytokines. J. Immunol. 137: 3295–3304.

    PubMed  CAS  Google Scholar 

  43. Robertson, F. M., A. J. Beavis, T. M. Oberszyn, S. M. O’Connell, A. Dokidos, D. L. Laskin, J. D. Laskin, and J. J. Reines. 1990. Production of hydrogen peroxide by murine epidermal keratinocytes following treatment with the tumour promoter 12-O-tetradecanoyl-13-acetate. Cancer Res. 50: 6062–6067.

    PubMed  CAS  Google Scholar 

  44. Takasu, N., M. Komatsu, T. Aizawa, and T. Yamada. 1988. Hydrogen peroxide generation in whole rat pancreatic islets: synergistic regulation by cytoplasmic free calcium and protein kinase C. Biochem. Biophys. Res. Commun. 155: 569–575.

    Article  PubMed  CAS  Google Scholar 

  45. Tiku, M. L., J. B. Liesch, and F. M. Robertson. 1990. Production of hydrogen peroxide by rabbit articular chondrocytes: enhancement by cytokines. J. Immunol. 145: 690–697.

    PubMed  CAS  Google Scholar 

  46. Kather, H., and H. I. Kreiger-Bauer. 1992. A stimulus sensitive NADPH-oxidase present in human fat cell plasma membrane defines c novel pathway of signal transduction. Biol. Chem. Hoppe-Seyler 373: 746.

    Google Scholar 

  47. Lo, Y. Y. C., and T. F. Cruz. 1995. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem. 270: 11727–11730.

    Article  PubMed  CAS  Google Scholar 

  48. Szatrowski, T. P., and C. F. Nathan. 1991. Production of large amounts of hydrogen peroxide by human tumour cells. Cancer Res. 51: 794–798.

    PubMed  CAS  Google Scholar 

  49. Herontin, Y., G. Debydupont, G. Deby, M. Debruyn, M. Lamy, and P. Franchimont. 1993. Production of active oxygen species by isolated chondrocytes. Bri. J. Rheumatol. 32: 562–567.

    Article  Google Scholar 

  50. Burdon, R. H. 1992. Cell proliferation and oxidative stress: basis for anticancer drugs. Proc. R. Soc. Edinburgh 99B: 169–176.

    Google Scholar 

  51. Burdon, R. H., V. Gill, and C. Rice-Evans. 1993. Reduction of a tetrazolium salt and Superoxide generation in human tumour cells (HeLa). Free Rad. Res. Commun. 18: 369–388.

    Article  CAS  Google Scholar 

  52. Hennet, T., C. Richter, and C. Peterhans. 1993. Tumour necrosis factor-α induces Superoxide generation in mitochondria of L-929 cells. Biochem. J. 289: 587–592.

    PubMed  CAS  Google Scholar 

  53. Goosens, V., J. Grooten, K. DeVos, and W. Fiers. 1995. Direct evidence for tumour necrosis factor-induced mitichondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA 92: 8115–8119.

    Article  Google Scholar 

  54. Cossarizza, A., C. Francheschi, D. Monti, S. Salvioli, E. Bellesia, R. Rivabena, L. Biondo, G. Rainaldi, A. Tinari, and W. Malorni. 1995. Protective effect of N-acetylcysteine in tumour necrosis factor-α-induced apoptosis in U937 cells: the role of the mitochondria. Exp. Cell Res. 220: 232–240.

    Article  PubMed  CAS  Google Scholar 

  55. Burdon, R. H., D. Alliangana, and V. Gill. 1995. Hydrogen peroxide and the proliferation of BHK-21 cells. Free Rad. Res. 23: 471–486.

    Article  CAS  Google Scholar 

  56. Kensler, T. W., D. M. Bush, and W. J. Kozumbo. 1983. Inhibition of tumour promotion by a biomimetic Superoxide dismutase. Science 221: 75–77.

    Article  PubMed  CAS  Google Scholar 

  57. Hildago, E., and B. Demple. 1994. An iron-sulphur centre essential for transcription activation by redox sensing Sox R protein. EMBO J. 13: 138–146.

    Google Scholar 

  58. Stortz, G., L. A. Tartaglia, and B. Ames. 1990. Transcriptional regulator of oxidative stress inducible genes—direct activation by oxidation. Science 248: 189–194.

    Article  Google Scholar 

  59. Stortz, G., and L. A. Tartaglia. 1992. OxyR: a regulator of antioxidant genes. J. Nutr. 122: 627–630.

    Google Scholar 

  60. Datta, R., N. Taneja, V. P. Sukhatma, S. A. Qreshi, R. Weichselbaum, and D. W. Kufe. 1993. Reactive oxygen intermediates target CC(A/T)6 GG sequences to mediate activation of early growth response transcription factor gene by ionising radiation. Proc. Natl. Acad. Sci. USA 90: 2419–2422.

    Article  PubMed  CAS  Google Scholar 

  61. Datta, R., D. E. Hallahan, S. M. Kharbanda, E. Rubin, M. K. Sherman, E. Huberman, R. R. Weichselbaum, and D. W. Kufe. 1992. Involvement of reactive oxygen species in the induction of c-jun gene transcription by ionising radiation. Biochemistry 31: 8300–8306.

    Article  PubMed  CAS  Google Scholar 

  62. Treisman, R.H. 1980. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46: 567–574.

    Article  Google Scholar 

  63. Larsson, R., and P. Cerutti. 1989. Translocation and enhancement of phosphotransferase activity of protein kinase C following exposure of mouse epidermal cells to oxidants. Cancer Res. 49: 5627–5632.

    PubMed  CAS  Google Scholar 

  64. Amstad, P. A., G. Krupitza, and P. Cerutti. 1992. Mechanism of c-fos induction by active oxygen. Cancer Res. 52: 3952–3960.

    PubMed  CAS  Google Scholar 

  65. Gopalakrishna, R., and W. B. Anderson. 1989. Ca2+ and phospholipid independent activation of protein kinase C by selective oxidative modification of the regulating domain. Proc. Natl. Acad. Sci. USA 86: 6758–6762.

    Article  PubMed  CAS  Google Scholar 

  66. Kass, G. E. N., S. K. Duddy, and S. Orrenius. 1989. Activation of protein kinase C by redox-cycling quinones. Biochem. J. 260: 499–507.

    PubMed  CAS  Google Scholar 

  67. Kyriakis, J. M., P. Banerjee, E. Nickolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett. 1994. The stress-activated protein kinase subfamily of c-jun kinases. Nature 369: 156–160.

    Article  PubMed  CAS  Google Scholar 

  68. Keyse, S. M., and E. A. Emslie. 1992. Oxidative stress and heat shock induce a human gene encoding a protein tyrosine Phosphatase. Nature 359: 644–647.

    Article  PubMed  CAS  Google Scholar 

  69. Stern, A. 1994. Oxidative stress and growth factor-mediated signal transduction, pp. 35–42. In C. Pasquier, R. Y. Olivier, C. Auclair, and L. Packer (eds.), Oxidative Stress, Cell Activation and Viral Infection. Birkhauser Verlag, Basel.

    Chapter  Google Scholar 

  70. Gamou, S. and N. Shimizu. 1995. Hydrogen peroxide preferentially enhances the tyrosine phosphorylation of epidermal growth factor receptor. FEBS Lett. 357: 161–164.

    Article  PubMed  CAS  Google Scholar 

  71. Lander, H. M., J. S. Ogiste, K. K. Teng, and A. Novogrodsky, 1995. p21ras as a common signalling target of reactive free radicals and cellular redox stress. J. Biol. Chem. 270: 21195–21198.

    Article  PubMed  CAS  Google Scholar 

  72. Abate, C., L. Patel, F. J. Rauscher, and T. Curran. 1990. Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 249: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  73. Xanthoudakis, S., G. Miao, F. Wang, Y.-C. E. Pan, and T. Curran. 1992. Redox activation of Fos-Jun DNA-binding activity is mediated by a DNA repair enzyme. EMBO J. 11: 3323–3335.

    PubMed  CAS  Google Scholar 

  74. Wasylyk, C. and B. Wasylyk. 1993. Oncogenic conversion of Ets affects redox regulation in vivo and in vitro. Nucleic Acids Res. 21: 523–529.

    Article  PubMed  CAS  Google Scholar 

  75. Kumar, S., A. B. Rabson, and C. Gelmas. 1992. The RxxRxRxx C motif conserved in all Rel/kappaB proteins is essential for the DNA-binding activity and redox regulation of the v-Rel oncoprotein. Mol. Cell. Biol. 12: 3094–3106.

    PubMed  CAS  Google Scholar 

  76. Guehmann, S., G. Vorbrueggen, F. Kalkbrenner, and K. Moelling. 1992. Reduction of a concerved Cys is essential for Myb DNA-binding. Nucleic Acids Res. 20: 2279–2286.

    Article  PubMed  CAS  Google Scholar 

  77. Hainaut, P., and J. Milner. 1993. Redox modulation of p53 conformation and sequence specific DNA-binding in-vitro. Cancer Res. 53: 4469–44

    PubMed  CAS  Google Scholar 

  78. Matthews, J. R., W. Kaszudska, G. Turcatti, T. N. C. Wells, and R. T. Hay. 1993. Role of cysteine 62 in DNA recognition of NF-κB. Nucleic Acids Res. 21: 1727–1734.

    Article  PubMed  CAS  Google Scholar 

  79. Schreck, R., P. Rieber, and P. A. Baeuerle. 1991. Reaction oxygen intermediates as apparently widely used messengers in the activation of NF-κB transcription factor and HIV-1. EMBO J. 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  80. Gaiter, D., S. Mihm, and W. Droge. 1994. Distinct effects of glutathione disulphide on the nuclear transcription factors κB and activator protein-1. Eur. J. Biochem. 221: 639–648.

    Article  Google Scholar 

  81. Burdon, R. H., and V. Gill. 1993. Cellularly generated active oxygen species and Hela cell proliferation. Free Rad. Res. Commun. 19: 203–213.

    Article  CAS  Google Scholar 

  82. Issels, R. D., A. Nagele, K.-G. Eckert, and W. Willmans. 1988. Promotion of cysteine uptake and its utilisation for glutathione biosynthesis induced by cysteamine and N-acetylcysteine. Biochem. Pharmacol. 36: 127–131.

    Google Scholar 

  83. Burgunder, M., A. Varriale, and B. H. Lanterberg. 1988. Effect of N-acetylcysteine on plasma cysteine and glutathione following paracetamol administration. Eur. J. Clin. Pharmacol. 36: 881–886.

    Google Scholar 

  84. Shaw, J. P., and I. M. Chou. 1986. Elevation of intracellular glutathione content associated with mitogenic stimulation of quiescent fibroblasts. J. Cell. Physiol. 129: 193–198.

    Article  PubMed  CAS  Google Scholar 

  85. Kang, Y.-J., and M. D. Enger. 1991. Increased glutathione levels in quiescent serum stimulated NRK-49 cells are associated not with a response of growth but with nutrient repletion. J. Cell. Physiol. 148: 197–201.

    Article  PubMed  CAS  Google Scholar 

  86. Burdon, R. H., D. Alliangana, and V. Gill. 1994. Endogenously generated active oxygen species and cellular glutathione levels in relation to BHK-21 cell proliferation. Free Rad. Res. 21: 121–133.

    Article  CAS  Google Scholar 

  87. Ishii, T., I. Hishinuma, S. Bannai, and Y. Sugita. 1981. Mechanism for growth promotion of mouse lymphoma LI210 cells in vitro by feeder layers or 2-mercaptoethanol. J. Cell. Physiol. 104: 215–223.

    Google Scholar 

  88. Lancombe, P., L. Kraus, M. Fay, and J.-J. Pocidalo. 1987. Glutathione status of rat thymocytes and splenocytes during early events of their ConA proliferation responses. Biochimie 69: 37–44.

    Article  Google Scholar 

  89. Fidelus, R. K. 1988. The generation of oxygen radicals: a positive signal for lymphocyte activation. Cell. Immunol. 113: 175–182.

    Article  PubMed  CAS  Google Scholar 

  90. Droge, W., H.-P. Eck, and S. Mihm. 1992. HIV-induced cysteine deficiency of T-cell dysfunction: a rationale for treatment with N-acetylcysteine. Immunol. Today 13: 211–214.

    Article  PubMed  CAS  Google Scholar 

  91. Staal, F. J. J., M. T. Anderseon, G. E. S. Staal, L. A. Hertzenberg, C. Gitler, and L. A. Hertzenberg. 1994. Redox regulation of signal transduction phosphorylation and calcium influx. Proc. Natl. Acad. Sci. USA 91: 3619–3622.

    Article  PubMed  CAS  Google Scholar 

  92. Meister, A., 1988. Metabolism and function of glutathione, pp. 367–474. In D. Dolphin, R. Poulson, and O. Avramovic, (eds.), Glutathione: Chemical, Biochemical and Medical Aspects. John Wiley, New York.

    Google Scholar 

  93. Staal, F. J. J., M. Roederer, and L. A. Hertzenberg. 1990. Intracellular thiols regulate the activation of nuclear factor κB and transcription of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 87: 9943–9949.

    Article  PubMed  CAS  Google Scholar 

  94. Puri, P. L., M. L. Avantaggiata, V. L. Burgio, P. Chirillo, D. Collepordo, C. Natoli, C. Balsano, and M. Levrero. 1995. Reactive oxygen intermediates mediate angiotensin II-induced c-Junc-Fos heterodimer DNA binding activity and proliferative hypertrophie responses in myogenic cells. J. Biol. Chem. 270: 22129–22134.

    Article  PubMed  CAS  Google Scholar 

  95. Sundaresan, M., Z.-X. Yu, V. J. Ferrans, K. Irani, and T. Finkel. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296–299.

    Article  PubMed  CAS  Google Scholar 

  96. Shibanuma, M., S. Arata, M. Murata, and K. Nose. 1995. Activation of DNA synthesis and expression of JE gene by catalase in mouse osteoblastic cells: possible involvement of hydrogen peroxide in negative growth regulation. Exp. Cell Res. 218: 132–136.

    Article  PubMed  CAS  Google Scholar 

  97. Burdon, R. H., V. Gill, and D. Alliangana. Accepted. Hydrogen peroxide in relation to proliferation and apopotosis in BHK-21 hamster fibroblasts. Free Rad. Res. 24: 81–93.

    Google Scholar 

  98. Korsmeyer, S. J. 1995. Regulation of cell death. Trends Genet. 11: 101–105.

    Article  PubMed  CAS  Google Scholar 

  99. Krajewski, S., S. Tanaka, S. Takayama, M. J. Schibler, W. Fenton, and J. C. Reed. 1993. Investigation of the subcellular distribution of the Bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum and outer michondrial membranes. Cancer Res. 53: 4701–4714.

    PubMed  CAS  Google Scholar 

  100. Nguyen, M., D. G. Millar, V. W. Yong, S. J. Korsmeyer, and G. C. Shore. 1993. Targeting of Bcl-2 to the mitochondrial membrane by a COOH-terminal signal anchor sequence. J. Biol. Chem. 286: 25264–25268.

    Google Scholar 

  101. Hockenbery, D. M., Z. N. Oltavi, X.-M. Ying, C. L. Milliman, and S. J. Korsmeyer. 1993. Bcl-2 functions in an anti-oxidant pathway to prevent apoptosis. Cell 75: 241–251.

    Article  PubMed  CAS  Google Scholar 

  102. Kane, D. J., T. A. Sarafian, R. Anton, H. Hahn, E. B. Gralla, J. S. Valentine, T. Ord, and D. E. Bredesen. 1993. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  103. Yuan, J., S. Shaham, S. Ledoux, H. M. Ellis, and H. R. Horvitz. 1993. The C. elegans cell death gene ced-3 encode a protein similar to mammalian interleukin-1 γ-converting enzyme. Cell 75: 641–651.

    Article  PubMed  CAS  Google Scholar 

  104. Lazebnik, Y. A., S. H. Kaufman, S. Desnoyners, G. G. Poirer, and W. C. Earnshaw. 1994. Cleavage of poly (ADP-ribose) Polymerase by a proteinase with properties like ICE. Nature 371: 346–341.

    Article  PubMed  CAS  Google Scholar 

  105. Talley, A. K., S. Dewhurst, S. W. Perry, S. C. Dollard, S. Gummuluru, S. M. Fine, D. New, L. G. Epstein, H. E. Gendelman, and H. A. Gelbard. 1995. Tumour necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl2 and crmA. Mol. Cell. Biol. 15: 2359–2366.

    PubMed  CAS  Google Scholar 

  106. Dizdaraglu, M. 1993. Chemistry of free radical damage to DNA and nucleoproteins, pp. 19–39. In B. Halliwell and O. I. Aruoma (eds.), DNA and Free Radicals. Ellis Horwood, New York, London.

    Google Scholar 

  107. Urano, S., K. Yano, and M. Matsuo. 1988. Membrane-stabilizing affect of vitamin E: effect of α-tocopherol and its model compounds on the fluidity of lecethin liposomes. Biochem. Biophys. Res. Commun. 150: 469–475.

    Article  PubMed  CAS  Google Scholar 

  108. Rice-Evans, C., and K. R. Bruckdorfer. 1992. Free radicals, lipoproteins and cardiovascular dysfunction. Mol. Asp. Med. 13: 1–111.

    Article  CAS  Google Scholar 

  109. Melho-Filho, A. C., M. E. Hoffman, and R. Meneghini. 1984. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem. J. 218: 273–275.

    Google Scholar 

  110. Janero, D. R., D. Hreniok, and H. M. Sharif. 1991. Hydrogen peroxide induced oxidative stress to the mammalian heat-muscle cell (cardiomyocyte): lethal peroxidation membrane injury. J. Cell. Physiol. 149: 347–364.

    Article  PubMed  CAS  Google Scholar 

  111. Tappel, A. L., and C. J. Dillard. 1981. In vivo lipid peroxidation: measurement via exhaled pentane and protection by vitamin E. Fed. Proc. 40: 174–178.

    PubMed  CAS  Google Scholar 

  112. Esterbauer, H. 1985. Lipid peroxidation product formation, chemical properties and biological activation, pp. 29–47. In G. Poli, K. Cheesman, M. V. Dianzani, T. Slater (eds.), Free Radicals in Liver Injury. IRL Press, Oxford.

    Google Scholar 

  113. Wolff, S. P., A. Garner, and R. P. Dean. 1986. Free radicals, lipids and protein degradation. Trends Biochem. Sci. 11: 27–31.

    Article  CAS  Google Scholar 

  114. Bell, R. M., and D. J. Burns. 1990. Lipid activation of protein kinase C. J. Biol. Chem. 266: 4661–4664.

    Google Scholar 

  115. Thomas, C. E., and D. J. Reed. 1990. Radical-induced inactivation of kidney Na+, K+/-ATPase: sensitivity to membrane lipid peroxidation and protective effect of Vitamin E. Arch. Biochem. Biophys. 281: 96–105.

    Article  PubMed  CAS  Google Scholar 

  116. Paradisi, L., C. Panagini, M. Parola, G. Barrera, and M. U. Dianzani. 1985. Effect of 4-hydroxynonenal on adenyl cyclase and 5′-nucleotidase activity in rat liver plasma membranes. Chem. Biol. Interact. 53: 209–221.

    Article  PubMed  CAS  Google Scholar 

  117. Fazio, V. M., G. Barrera, S. Martinotti, M. G. Farace, B. Giglioni, L. Frati, V. Manzari, and M. U. Dianzani. 1992. 4-hydroxynonemal, a product of cellular lipid peroxidation, which modulates c-myc and globin gene expression in K-562 erythroleukaemic cells. Cancer Res. 52: 4866–4871.

    PubMed  CAS  Google Scholar 

  118. Forrest, V. J., Y.-H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan. 1994. Oxidative stress-induced apoptosis prevented by Trolox. Free Rad. Biol. Med. 16: 675–684.

    Article  PubMed  CAS  Google Scholar 

  119. Muschel, R. J., E. J. Bernhard, L. Garza, W. G. McKenna, and C. J. Koch. 1995. Induction of apoptosis at different oxygen tensions—evidence that oxygen radicals do not mediate apoptosis signalling. Cancer Res. 55: 995–998.

    PubMed  CAS  Google Scholar 

  120. Jacobson, M. D., and M. C. Raff. 1995. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374: 814–816.

    Article  PubMed  CAS  Google Scholar 

  121. Shimizu, S., Y. Eguchi, H. Kosaka, W. Kamiike, H. Matsuda, and Y. Tsujimoto. 1995. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 374: 811–813.

    Article  PubMed  CAS  Google Scholar 

  122. Garland, J. M., A. Halestrap, and J. Knight. Accepted. Bcl-2 inhibits apoptosis in haemopoetic cells induced by IL-3 removal or ATP depletion without changes in energy metabolism or free radical production. Evidence that bcl-2 promotes a state of metabolic interaction. J. Biol. Chem.

    Google Scholar 

  123. Pluthero, F., M. Shreeve, and D. Eskinazi. 1990. Purification of an inhibitor of erythroid progenitor cell cycling and antagonist to interleukin 3 from mouse marrow cell supernatants and its indentification as cytosolic Superoxide dismutase. J. Cell Biol. 111: 1217–1223.

    Article  PubMed  CAS  Google Scholar 

  124. Pluthero, F., M. Shreeve, H. Eskinazi, H. Gaag, and A. Axelrad. 1991. Superoxide dismutase specifically inhibits erythroid cell DNA synthesis and proliferation. Growth Factors 4: 397–304.

    Article  Google Scholar 

  125. Pluthero, F., and A. Axelrad. 1990. Superoxide dismutase as an inhibitor of erythroid progenitor cell cycling. Ann. NY. Acad. Sci. 1: 222–232.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burdon, R.H. (1997). Oxyradicals as Signal Transducers. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics