Skip to main content

Part of the book series: Population and Community Biology Series ((PCBS,volume 18))

Abstract

The “forward problem” in structured-population modeling is to work from observations and assumptions about the birth, death, and developmental rates of individuals within a population to predict population dynamics: how numbers of individuals within the population change through time. This is a well-behaved and respectable type of problem in that it is properly posed: the inputs to a model (information about births, deaths, and development) completely specify the outputs (population dynamics).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Banks, H. T., L. W. Botsford, F. Kappel, and C. Wang. 1991. Estimation of growth and survival in size-structured cohort data: An application to larval striped bass (Morone saxatilis). Journal of Mathematical Biology 30: 125–150.

    Article  Google Scholar 

  • Caswell, H. 1989. Matrix Population Models. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Caswell, H., and S. Twombly. 1989. Estimation of stage-specific demographic parameters for zooplankton populations: Methods based on stage-classified matrix projection models. Pp. 94–107 in L. McDonald, B. Manly, J. Lockwood, and J. Logan, eds., Estimation and Analysis of Insect Populations. Springer-Verlag, Berlin.

    Google Scholar 

  • Craven, P., and G. Wahba. 1979. Smoothing noisy data with spline functions. Numerische Mathematik 31: 377–403

    Article  Google Scholar 

  • Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical Optimization. Academic Press, London.

    Google Scholar 

  • Gurney, W. S. C., R. M. Nisbet, and J. H. Lawton. 1983. The systematic formulation of tractable single species population models incorporating age structure. Journal of Animal Ecology 52: 479–495.

    Article  Google Scholar 

  • Gurney, W. S. C., R. M. Nisbet, and S. P. Blythe. 1986. The systematic formulation of models of stage structured populations. Pp. 474–494 in J. A. J. Metz and O. Diekmann, eds., The Dynamics of Physiologically Structured Populations. Springer-Verlag, Berlin.

    Google Scholar 

  • Hay, S. J., G. T. Evans, and J. C. Gamble. 1988. Birth, death and growth rates for enclosed populations of calanoid copepods. Journal of Plankton Research 10(3): 431–454.

    Article  Google Scholar 

  • Levenberg, K. 1944. A method for the solution of certain non-linear problems in least squares. Applied Mathematics 25: 164–168.

    Google Scholar 

  • Manly, B. F. J. 1989. A review of methods for the analysis of stage frequency data. Pp. 1–69 in L. McDonald, B. Manly, J. Lockwood, and J. Logan, eds., Estimation and Analysis of Insect Populations. Springer-Verlag, Berlin.

    Google Scholar 

  • Marquardt, D. W. 1963. An algorithm for least-squares estimation of non-linear parameters. Journal of the Society for Industrial & Applied Mathematics 11: 431–441.

    Article  Google Scholar 

  • Metz, J. A. J., and O. Diekmann. 1986. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68. Springer-Verlag, Berlin.

    Google Scholar 

  • Murray, J. D. 1993. Mathematical Biology. 2nd ed. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Nisbet, R. M., and W. S. C. Gurney. 1982. Modelling Fluctuating Populations. Wiley, Chichester, Engl.

    Google Scholar 

  • Nisbet, R. M., and W. S. C. Gurney 1983. The systematic formulation of population models for insects with dynamically varying instar durations. Theoretical Population Biology 23(1): 114–135.

    Google Scholar 

  • Nisbet, R. M., S. P. Blythe, W. S. C. Gurney, and J. A. J. Metz. 1985. Stage structured models of populations with distinct growth and development processes. IMA Journal of Mathematics Applied in Medicine & Biology 2: 57–68.

    Article  CAS  Google Scholar 

  • Nisbet, R. M., W. S. C. Gurney, W. W. Murdoch, and E. McCauley. 1989. Structured population models: A tool for linking effects at individual and population levels. Biological Journal of the Linnean Society 37: 79–99.

    Article  Google Scholar 

  • Nychka, D. 1990. The average posterior variance of a smoothing spline and a consistent estimate of the average squared error. Annals of Statistics 18: 415–428.

    Article  Google Scholar 

  • Ohman, M. D., and S. N. Wood. In press. Mortality estimation for plank-tonic copepods: Pseudocalanus newmani in a temperate fjord. Limnology & Oceanography.

    Google Scholar 

  • Parslow, J., N. C. Sonntag, and J. B. L. Matthews. 1979. Technique of systems identification applied to estimating copepod population parameters. Journal of Plankton Research 1: 137–151.

    Article  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992. Numerical Recipes in C. 2nd ed. Cambridge University Press.

    Google Scholar 

  • Villalobos, M., and G. Wahba. 1987. Inequality-constrained multivari-ate smoothing splines with application to the estimation of posterior probabilities. Journal of the American Statistical Association 82(397): 239–248.

    Article  Google Scholar 

  • Wahba, G. 1983. Bayesian “confidence intervals” for the cross-validated smoothing spline. Journal of the Royal Statistical Society B 45(1): 133–150.

    Google Scholar 

  • Wahba, G. 1990. Spline Models of Observational Data. SIAM, Philadelphia.

    Google Scholar 

  • Watkins, D. S. 1991. Fundamentals of Matrix Computations. Wiley, New York.

    Google Scholar 

  • Wood, S. N. 1994. Obtaining birth and mortality patterns from structured population trajectories. Ecological Monographs 64(1): 23–44.

    Article  PubMed  CAS  Google Scholar 

  • Wood, S. N., and R. M. Nisbet. 1991. Estimation of Mortality Rates in Stage-Structured Populations. Lecture Notes in Biomathematics 90. Springer-Verlag, Berlin.

    Google Scholar 

  • Wood, S. N., S. P. Blythe, W. S. C. Gurney, and R. M. Nisbet. 1989. Instability in mortality estimation schemes related to stage-structure population models. IMA Journal of Mathematics Applied in Medicine & Biology 6: 47–68.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wood, S.N. (1997). Inverse Problems and Structured-Population Dynamics. In: Tuljapurkar, S., Caswell, H. (eds) Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Population and Community Biology Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5973-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5973-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-07271-0

  • Online ISBN: 978-1-4615-5973-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics