Skip to main content

Integration and Storage of Sensory Motor Information: Computation in the Cerebellum

  • Chapter
Human and Machine Perception
  • 125 Accesses

Abstract

In living organisms, movement is generated by muscle contraction and is controlled by the nervous system. The nervous control involves numerous centres and pathways elaborating motor and sensory inputs, providing the basis for reflex and voluntary movements. A primary brain structure involved in sensory motor control is the cerebellum.1,2 In this paper I will consider the basic network and neuronal properties of the cerebellum. Particular emphasis will be given to recent discoveries on neuronal computation and on their relevance to network function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Eccles, M. Ito, and J. Szentagothai, The Cerebellum as a Neuronal Machine, Springer Verlag, Berlin (1967).

    Google Scholar 

  2. M. Ito, The Cerebellum and Neural Control, Raven Press, New York (1984).

    Google Scholar 

  3. G. Holmes, The cerebellum of man, Brain, 62:1 (1939).

    Article  Google Scholar 

  4. H.C. Leiner, A.L. Leiner, and R.S. Dow, Cognitive and language functions of the human cerebellum, Trends Neurosci., 16:444(1993).

    Article  Google Scholar 

  5. J.A. Fiez, Cerebellar contribution to cognition, Neuron, 16:13 (1996).

    Article  Google Scholar 

  6. R.A. Schmidt, Motor Control and Motor Learning, Human kinetics, Champaign, Illinois (1988).

    Google Scholar 

  7. J.R. Bloedel, Functional heterogeneity with stuctural homogeneity: how does the cerebellum operate?, Behav. Brain Sci., 15:666 (1992).

    Article  Google Scholar 

  8. R. Llinas and J.P. Welsh, On the cerebellum and motor learning, Curr. Opin. Neurobiol., 3:958 (1993).

    Article  Google Scholar 

  9. E. De Shutter, Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis, Trends in Neurosci., 18:291 (1995).

    Article  Google Scholar 

  10. J.M. Bower and D.C. Woolstone, Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar Cortex, J. Neurophysiol., 49:745–766 (1983).

    Google Scholar 

  11. D. Marr, A theory of cerebellar cortex, J. Physiol., 202:437 (1969).

    Google Scholar 

  12. J.S. Albus, A theory of cerebellar function, Math. Biosc., 10:25 (1971).

    Article  Google Scholar 

  13. P.F.C. Gilbert, How the cerebellum could memorize movements, Nature, 254:688 (1975).

    Article  Google Scholar 

  14. M. Kawato and H. Gomi, The cerebellum and VOR/OKR learning models, Trends Neurosci., 15:445 (1992).

    Article  Google Scholar 

  15. G.M. Shambes, J.M. Gibson, and W. Welker, Fractured smatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping, Brain Behav. Evol., 15:94 (1978).

    Article  Google Scholar 

  16. J. Voogd and F. Bigare, Topographical distribution of olivary and cortico-nuclear fibers in the cerebellum, The inferior olivary nucleus, Raven Press, New York (1982).

    Google Scholar 

  17. J.P. Welsh, E.J. Lang, I. Sugihara, and R. Llinas, Dynamic organization of motor control within the olivocerebellar system, Nature, 374:453 (1995).

    Article  Google Scholar 

  18. J-S Lou and J.R. Bloedel, Responses of sagittally aligned Purkinje cells during perturbed locomotion: relation of climbing fiber activation to simple spike modulation, J. Neuwphysiol., 78:1820 (1992)

    Google Scholar 

  19. J.C. Howk, J. Keifer, and A.G. Barto, Distributed motor commands in the limb premotor network, Trends Neurosci., 16:27 (1993).

    Article  Google Scholar 

  20. J.C. Houk, J.T. Buckingham, and A.G. Bartho, Model of the cerebellum and motor learning, Behav. Brain Sci., in press.

    Google Scholar 

  21. W.T. Thach, H.P. Goodkin, and J.G. Keating, The cerebellum and the adaptive coordination of movement, Annu. Rev. Neurosci., 15:403 (1992).

    Article  Google Scholar 

  22. J.S. Albus, Brain, Behavior and Robotics, Byte Books, Petersborough, NH (1981).

    Google Scholar 

  23. M. Fujita, Adaptive filter model of the cerebellum, Biol. Cybern., 45:195 (1982).

    Article  MATH  Google Scholar 

  24. F. Chapeau-Blondeau and G. Chauvet, A neural network model of the cerebellar cortex performing dynamic associations, Biol. Cybern., 65:267 (1991).

    Article  Google Scholar 

  25. D.V. Buonomano and M.D. Mauk, Neural network model of the cerebellum: temporal discrimination and the timing of motor responses, Neural Comput., 6:38 (1993).

    Article  Google Scholar 

  26. N.E. Berthier, S. Singh, A.G. Barto, and J.C. Houk, Disributed representation of limb motor programs in arrays of adjustable pattern generators, J. Cogn. Neurosci., 5:56 (1993).

    Article  Google Scholar 

  27. M. Ito, Movement and thought: identical control mechanisms by the cerebellum, Trends Neurosci., 16:448(1993).

    Article  Google Scholar 

  28. S.G. Lisberger, T.A. Pavelko, and D.M. Broussard, Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of leaning, J. Neurophysiol., 72:974(1994).

    Google Scholar 

  29. A. Pellionisz and R. Llinas, Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor, Neuroscience, 5:1125 (1980).

    Article  Google Scholar 

  30. B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates Inc., Sunderland Massachussets, (1992).

    Google Scholar 

  31. R. Llinas, The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system functions, Science, 242:1654 (1988).

    Article  Google Scholar 

  32. R. Llinas and M. Sugimori, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol., 305:171 (1980).

    Google Scholar 

  33. R. Llinas and M. Sugimori, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol., 305:197 (1980).

    Google Scholar 

  34. E. D’Angelo, Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors, J. Physiol., 484:397 (1995).

    Google Scholar 

  35. J. Midtgard, Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro, J. Physiol., 457:329 (1992).

    Google Scholar 

  36. R. Llinas and M. Muhlethaler, An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig, J. Physiol., 404:215 (1988).

    Google Scholar 

  37. R. Llinas and M. Muhlethaler, Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation, J. Physiol., 404:241 (1988).

    Google Scholar 

  38. H. Jahnsen, Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro, J. Physiol., 372:129 (1986).

    Google Scholar 

  39. H. Jahnsen, Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro, J. Physiol., 372:149 (1986).

    Google Scholar 

  40. R. Llinas and Y. Yarom, Oscillatory properties of guinea-pig inferior olivary neurons and their pharmacological modulation: an in vitro study, J. Physiol., 376:163 (1986).

    Google Scholar 

  41. D.J. Rossi, S. Alford, E. Mugnaini, and N.T. Slater, Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse, J. Neurophysiol., 74:24 (1995).

    Google Scholar 

  42. I. Vranesic, T. Iijima, M. Ichikawa, G. Matsumoto, and T. Knoepfel, Signal transmission in the parallel fiber-Purkinje cell system visualized by high resolution imaging, Proc. Natl Acad. Sci. USA, 91:13014 (1994).

    Article  Google Scholar 

  43. T.V.P. Bliss and G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361:31 (1993).

    Article  Google Scholar 

  44. E. D’Angelo, P. Rossi, and V. Taglietti, Different proportions of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum, Neuroscience, 53:121 (1993).

    Article  Google Scholar 

  45. E. D’Angelo, P. Rossi, and V. Taglietti, Voltage-dependent kinetics of N-methyl-D-aspartate synaptic currents rat cerebellar granule cells, Eur. J. Neurosci. 6:640 (1994).

    Article  Google Scholar 

  46. P. Rossi, E. D’Angelo, and V. Taglietti, Differential long-lasting potentiation of the NMDA and non-NMDA synaptic currents induced by metabotropic and NMDA receptor coactivation in cerebellar granule cells, Eur. J. Neurosci., 8:1182 (1996).

    Article  Google Scholar 

  47. R. Maex, B.P. Vos, and E. Deshutter, Dynamics of a detailed model of the granular layer of the cerebellum, Soc. Neurosci. Abs. 433:15 (1996).

    Google Scholar 

  48. S.G. Bricley, S.G. Cull-Candy, and M. Farrant, Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA-A receptors, J. Physiol., in press.

    Google Scholar 

  49. F. Gabbiani, J. Midtgaard, and T. Knoepfel, Synaptic interation in a model of cerebellar granule cells, J. Neurophysiol., 72:999 (1994).

    Google Scholar 

  50. E. D’Angelo, G. Naldi, and P. Rossi., A compartmentl model of the cerebellar granule cell, Cell Modelling and Cell Signalling, ECMBM, Heiddberg (1996).

    Google Scholar 

  51. Berridge 1996, Inosithol trisphosphate and Ca in neuronal signalling, Coincidence Detection in the Nervous System, A. Konnerth, R.Y. Tsien, K. Mikoshiba and J. Altaian eds., HFSP, Strasbourg (1996).

    Google Scholar 

  52. I. Llano, A. Marty, C.M. Armstrong, and A. Konnerth, Synaptic-and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices, J. Physiol., 434:183 (1991).

    Google Scholar 

  53. B. Barbour, Synaptic currents evoked in Purkinje cells by stimulating individual granule cells, Neuron, 11:759 (1993).

    Article  Google Scholar 

  54. R. Llinas and M. Sugimori, The electrophysiology of the cerebellar Purkinje cell revisited, The Cerebellum Revisited, R. Llinas and C. Sotelo eds., Springer Verlag, Berlin (1992).

    Chapter  Google Scholar 

  55. J. Midtgaard 1994, Spatial synaptic integration in Purkinje cell dendrites, J. Physiol., (Paris) 89:23 (1995).

    Google Scholar 

  56. E. De Shutter and J.M. Bower, An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamp in slice, J. Neurophysiol., 71:375 (1994).

    Google Scholar 

  57. E. De Shutter and J.M. Bower, An active membrane model of the cerebellar Purkinje cell. II. Simulation of synaptic responses, J. Neurophysiol., 71:401 (1994).

    Google Scholar 

  58. D.J. Linden and J.A. Connor, Long-term synaptic depression, Annu. Rev. Neurosci., 18:319 (1995).

    Article  Google Scholar 

  59. R.Y. Tsien 1996, LTD in cerebellar Purkinje neurons results from coincidence of NO and depolarization-induced Ca + transients, Coincidence Detection in the Nervous System, A. Konnerth, R.Y. Tsien, K. Mikoshiba and J. Altaian eds., HFSP, Strasbourg (1996).

    Google Scholar 

  60. M. Sakuai, Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices, J. Physiol., 394:463 (1987).

    Google Scholar 

  61. F. Crepel and D. Jaillard, Pairing of pre-and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro, J. Physiol., 432:123 (1991).

    Google Scholar 

  62. Y. Sato, A. Miura, H. Fusiki, and T. Kawasaki, Short term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input, J. Neurophysiol., 68:2051 (1992).

    Google Scholar 

  63. F. Conquet, Z.I. Bashir, C.H. Davies, H. Daniel, F. Ferraguti, F. Bordi, K. Franz-Bacon, A. Reggiani, V. Matarese, F. Conde, G.L. Collingidge, and F. Crepel, Motor deficit and impairement of synaptic plasticity in mice lacking mGluRl, Nature, 372:237 (1994).

    Article  Google Scholar 

  64. M. Kano, U. Rexhausen, J. Dressen, and A. Konnerth, Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells, Nature, 356:601 (1992).

    Article  Google Scholar 

  65. I. Llano, N. Leresche, and A. Marty, Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents, Neuron, 6:565 (1994).

    Article  Google Scholar 

  66. P. Vincent, and A. Marty, Neighboring cerebellar Purkinje cells communicate via retrograde inhibition of common presynaptic interneurones, Neuron, 11:885 (1993).

    Article  Google Scholar 

  67. D. Mouginot and B. Gaehwiler, Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro, Neuroscience, 64:699 (1995).

    Article  Google Scholar 

  68. W. Morishita and B.R. Sastry, Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei, J. Neuropysiol, 76:59 (1996).

    Google Scholar 

  69. I. Lampl and Y. Yarom, Subthreshold oscillations of the membrane potential: a functional synchronizing timing device, J. Neurophysiol., 70:2181 (1993).

    Google Scholar 

  70. E. J. Lang, I. Sugihara, and R. Llinas, GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat, J. Neurophysiol., 76:255 (1996).

    Google Scholar 

  71. C. Koch and I. Segev, Methods in Neuronal Modeling, MIT Press, London (1989).

    Google Scholar 

  72. T. McKenna, J. Davies and S.F. Zornetzer, Single Neuron Computation, Academic Press, London (1992).

    MATH  Google Scholar 

  73. C. Koch and J.L. Davies, Large-Scale Neuronal Theories of the Brain, MIT Press, London (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

D’Angelo, E. (1997). Integration and Storage of Sensory Motor Information: Computation in the Cerebellum. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds) Human and Machine Perception. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5965-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5965-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7734-4

  • Online ISBN: 978-1-4615-5965-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics