Skip to main content

Tactile Sensors and Systems

  • Chapter
  • 120 Accesses

Abstract

Robots are now employed in a large numbers of industrial and research applications, such as mechanical parts assembly, dangerous experiments, teleoperation and manipulation of objects in far-off or unaccessible locations (space or underwater environments). However, only few of them are equipped with artificial sensory systems which allow them to be aware of the external world and, thus, to autonomously operate in unknown environments. For those robots which have sensing capabilities, the sensory input is primarily visual, because the visual channel provides the most information about the environment and visual sensing technology is quite well developed. However, vision does not give to a robot any information on the grip force when it is handling an object, neither on the compliance of the object. As a consequence the robot lacks of an essential sensory capability for object handling and dexterous manipulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.R. Nicholls and M.R. Lee, A survey of robot tactile sensing technology, Int. J. Robotics Res., 8, 3, 3–30, (1989).

    Article  Google Scholar 

  2. D. De Rossi, Artificial tactile sensing and haptic perception, Meas. Sci. Technol., 2, 1003–1016, (1992).

    Article  Google Scholar 

  3. A. Pugh (ed.), Robot sensors vol. 2: Tactile and non vision, Kemston, UK, IFS, (1986).

    Google Scholar 

  4. J.G. Webster, Tactile Sensors for Robotics and Medicine, Wiley, New York, (1988).

    Google Scholar 

  5. H.R. Nicholls, Advanced Tactile Sensing for Robotics, World Scientific, Singapore, (1992).

    Google Scholar 

  6. R. Bajcsy, Shape from touch, in: Advances in Automation and Robotics, G.N. Saridis ed., JAI Press Inc, London, (1985).

    Google Scholar 

  7. N. Sato, W.B. Heginbotham, A. Pugh, A method for three-dimensional part identification by tactile transducer, in: Robot sensors vol. 2: Tactile and non-vision, A. Pugh ed., Kempston, UK, (1986).

    Google Scholar 

  8. R.A. Russel, Tactile sensing of 3-dimensional surface features, Robotica, 8(2), 111–115, (1990).

    Article  Google Scholar 

  9. G. Magenes and F. Germagnoli, An artificial system emulating human strategies in tactile exploration, Materials Science and Engineering, C1. Biomimetic Materials, Sensors and Systems, Elsevier, Lausanne, Switz, in press (1997).

    Google Scholar 

  10. D. De Rossi, G. Canepa, G. Magenes, F. Germagnoli, A. Caiti, and T. Parisini, Skin-like tactile sensor array for contact stress field extraction, Materials Science and Engineering, C1. Biomimetic Materials, Sensors and Systems, Elsevier, Lausanne, Switz., vol. 1, n.l, 23–36, (1993).

    Google Scholar 

  11. H.A. Caiti, G. Canepa, D. De Rossi, F. Germagnoli, G. Magenes, T. Parisini, Towards the realization of an artificial tactile system: fine-form discrimnation by a tensorial tactile sensor array and neural inversion algorithms. IEEE Trans. System, Man, and Cyber., vol. 25, pp. 933–46, (199

    Article  Google Scholar 

  12. R.S. Fearing and T.O. Binford, Using a cylindrical tactile sensor for determining curvature, IEEE Trans. Robotics and Automation, vol. 7, 6, 806–817, (1991).

    Article  Google Scholar 

  13. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, (1987).

    Google Scholar 

  14. R.D. Howe and M.R. Cutkosky, Sensing skin acceleration for texture and slip perception, Proc. IEEE Int. Conf. Robotics and Automation, Scottsdale, Arizona, 145–150, (1990).

    Google Scholar 

  15. T. Manzoni, Anatomy and physiology of somatosensory processing, in: Human and Machine Perception: Information Fusion, Plenum Press (1997).

    Google Scholar 

  16. F. Germagnoli, S. Lazzari, R. Lombardi, G. Magenes, An artificial tactile sensor for fine-form discrimination, Proc. XVII Int. Conf. IEEE-EMBS, Montreal, Canada, (1995).

    Google Scholar 

  17. M.R. Tremblay and M.R. Cutkosky, Estimating friction using incipient slip sensing during a manipulation task, Proc. IEEE Int. Conf. Robotics and Automation, 429–434, (1993).

    Google Scholar 

  18. P. Colli Franzone, F. Germagnoli, L. Guerri, G. Magenes, Numerical simulation of stress inside a skin-like tactile sensor. Proc. VI Mediterranean Conference on Medical and Biological Engineering MEDICON’ 92, Capri, vol. I, 247–250 (1992).

    Google Scholar 

  19. Y.C. Pati, P.S. Krishnaprasad, and M.C. Peckerar, An analog neural network solution to the inverse problem of early taction., IEEE Trans, on Robotics and Automation, vol. 8, 2, 196, (1992).

    Article  Google Scholar 

  20. J.R. Phillips and K.O. Johnson, Tactile spatial resolution III. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges and gratings. J. Neurophysiol. 46, 1204, (1981).

    Google Scholar 

  21. R.S. Johansson and A.B. Vallbo, Sensory function of the skin primates., Pergamon Press, Oxford, England, (1986).

    Google Scholar 

  22. R.S. Johansson and A.B. Vallbo, Tactile sensory coding in the glabrous skin of the human hand, Trends in Neuroscience 27, (1983).

    Google Scholar 

  23. J.L. Loomis and S.J. Ledermann, Tactual perception, in: Handbook of Perception and Human Performance vol 2, K. Boff et al., eds., 1–41, Wiley, New York, (1986).

    Google Scholar 

  24. K.J. Overton, The acquisition, processing and use of tactile sensor data in robot control, Tech. rept. COINS 84-08, Dept. Computer and Information Science, Univ. Massachusset, (1984).

    Google Scholar 

  25. L.D. Harmon, Automated tactile sensing, Int. J. Robotics Res., 1 (2), 38–46, (1982).

    Google Scholar 

  26. M.H. Lee, Intelligent Robotics, Chapmann Hall, London, (1989).

    Google Scholar 

  27. W.E. Snyder and J. St Clair, Conductive elastomes as a sensor for industrial parts handling equipment, IEEE Trans. Instrumentation and Measurements, IM-27 (1), 94–99, (1978).

    Article  Google Scholar 

  28. T.H. Speteer, Flexible piezoresistive touch sensing array, Proc. SPIE — Int. Soc. Opt. Eng., Cambridge, MA, 1005, 31–43,(1989).

    Google Scholar 

  29. R.S. Fearing, Tactile sensing mechanisms, Int. J. Robotics Res., 9 (3), 3–23, (1990).

    Article  Google Scholar 

  30. S. Begej, Palnar and fingr-shaped optical tactile sensors for robotic applications, IEEE J. robotics and automation, 4 (5), 472–484, (1988).

    Article  Google Scholar 

  31. P. Dario, C. Domenici, C. Bardelli, D. De Rossi and P.C. Pinotti, Piezoelectric polymers: new sensor materials for robotic applications, Proc. 13 Int. Symp. Industrial Robots, 1434, (1983).

    Google Scholar 

  32. P. Dario and D. De Rossi, Tactile sensors and the gripping challenge, IEEE Spectrum, 22, 8, 46–52, (1985).

    Google Scholar 

  33. D. De Rossi, A. Nannini., and C. Domenici, Biomimetic tactile sensor with stress-component discrimination capability. J. Mol. Electron. 3, 173–81, (1987).

    Google Scholar 

  34. C. Domenici, D. De Rossi, A. Bacci and S. Bennati, Shear stress detection in an elastic layer by a piezoelectric polymer tactile sensor, IEEE Trans. Electr. Ins., 24, 1077–1081, (1989).

    Article  Google Scholar 

  35. A.N. Tikhonov and V. Y. Arsenin, Solution to ill-posed problems, Winston, W.H., New York, (1977).

    Google Scholar 

  36. G. Cybenko, Approximations by superpositions of a sigmoidal function, Math. Control, Signals, Systems., 2, 303–314, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Hornik, M. Stichombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359, (1989).

    Article  Google Scholar 

  38. T. Poggio and F. Girosi, Network for approximation and learning, Proc. IEEE, 78, 1481, (1990).

    Article  Google Scholar 

  39. G. Magenes, R. Benzi and F. Germagnoli, Artificial tactile perception: fine-form discrimination by backpropagation neural network, Proc. of 5th WIRN, E. Caianiello ed., World Scientific, Singapore, (1993).

    Google Scholar 

  40. S. Geva and J. Sitte, A constructive method for multivariate function approximation by multilayer perceptrons, IEEE Trans. Neural Networks, 3, 621–624,(1992).

    Article  Google Scholar 

  41. G. Carpenter and S. Grossberg, ART2: Self-Organization of stable category recognition codes for analog input patterns, Applied Optics, 4919–30, Dec. 1 (1987).

    Google Scholar 

  42. A. Papoulis, Probability, Random variables and stochastic processes, Mc Graw-Hill, New York. (1965).

    Google Scholar 

  43. M. Hu, Visual pattern recognition by momet invariant. IRE trans, on information theory, IT-8, 179–87, (1962).

    Google Scholar 

  44. F. Germagnoli, S. Lazzari and G. Magenes, Neural networks for tactile image reconstruction and classification, Proc. ICANN’ 95, EC2, 275–281, (1995).

    Google Scholar 

  45. F. Germagnoli and G. Magenes, A neural network based system for tactile exploratory tasks, NICROSP’96, IEEE Computer Society, 458–466, (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Magenes, G. (1997). Tactile Sensors and Systems. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds) Human and Machine Perception. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5965-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5965-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7734-4

  • Online ISBN: 978-1-4615-5965-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics