Skip to main content

Integrating Reflexes and Voluntary Behaviours: Coordination and Adaptation Controls in Man

  • Chapter
Human and Machine Perception

Abstract

Man and animals have phylogenetically acquired highly sophisticated sensorimotor controls such as coordination and adaptation controls which have been intensely studied and modelled over the past 25 years. These controls may be mediated through cognitive actions which depend on the nature, the general context of execution, the degree of learning and repetition of the task.

Coordination control is defined as the process (static and dynamic aspects) leading to optimisation of the performance of two sensorimotor systems involved in a common task (eye-hand tracking, eye-head pointing, two-arm reaching, etc.). Adaptation control defines short and long term changes within a sensorimotor system which progressively lead to the recovery of a close-to-normal function when an alteration affects the system’s input- output relationship (e.g. adaptation control in response to optical changes of the visuomanual relationship, of the vestibulo-ocular reflex, of the saccadic tracking system, etc.). This implies that an adaptive system has built-in plastic elements handling the changes. The resulting adaptive changes are still observed, over a given period, when the alteration, cause of the adaptation, is removed (the so-called post-effect).

Coordination and adaptation controls are described and modelled in the vestibuloocular system and the oculo-manual tracking system. We shall demonstrate that the essential function of both systems is based on a reflex which can be mediated by various factors including will. The coordination control will be illustrated as contributing to the decrease of the latency between eye and arm motion and the increase of smooth pursuit maximal velocity in self-moved target tracking as compared to eye-alone tracking. Adaptation control will be described as its contribution to maintain the gain of the vestibulo-ocular reflex (VOR) and the manuo-ocular reflex (MOR) to the appropriate values in spite of maturation changes, disease or when the observer is fitted with optical devices. Implications in clinics and telerobotics will be proposed as a conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Arbib, Programs, schémas, and neural networks for control of hand movements: beyond the RS framework, in: Attention and performance XIII. Motor representation and control, M. Jeannerod, ed., Lawrence Erlbaum, Hilldal, 111–138 (1990).

    Google Scholar 

  2. S. Gibet and P.F. Marteau, Modèle sensorimoteur pour le contrôle et la commande de mouvements du bras, Intellectica, 2:233–251 (1995).

    Google Scholar 

  3. V. Henn, B. Cohen, and L.R. Young, Neurosciences Research Program Bulletin, Vol. 18, MIT Press, 459–651 (1980).

    Google Scholar 

  4. B. Cohen, D.L. Tomko, and F. Guedry, Sensing and controlling motion: vestibular and sensorimotor function, Annals of the New York Academy of Sciences, 656:158–165 (1992).

    Article  Google Scholar 

  5. S.M. Highstein, B. Cohen, and J.A. Büttner-Ennever, New Directions in Vestibular Research, Annals of the New York Academy of Sciences, 781:1–739 (1996).

    Article  Google Scholar 

  6. M. Ito, N. Nisimura, and M. Yamamoto, Pathway for the vestibulo-ocular reflex excitation arising from the semi-circular canals of rabbits, Exp. Brain Res., 24:257–271 (1976).

    Google Scholar 

  7. D.A. Robinson, Vestibulo-ocular connections, Invest. Ophthalmol., 13:409–412 (1974).

    Google Scholar 

  8. G.M. Gauthier, E. Marchetti, and J. Pellet, Cerebellar control of vestibulo-ocular reflex (VOR) studied with injection of harmaline in the trained baboon, Arch. Ital. Biol., 121:19–36 (1983).

    Google Scholar 

  9. F.A. Miles and J.H. Fuller, Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey, Brain Res., 80:512–516(1974).

    Article  Google Scholar 

  10. S.G. Lisberger and T.J. Sejnowski, Motor learning in a recurrent network model based on the vestibuloocular reflex, Nature, 360:159–161 (1992).

    Article  Google Scholar 

  11. T. Raphan and B. Cohen, The role of integration in oculomotor control, in: Models of Oculomotor Behavior and Control, B.L. Zuber ed., CRC Press (1981).

    Google Scholar 

  12. H.S. Tan, M. Shelhamer, and D.S. Zee, Effect of head orientation and position on vestibuloocular reflex adaptation, in: Sensing and Controlling Motion, B. Cohen, D.L. Tomko, F. Guedry eds., Annals of the New York Academy of Sciences, 656:158–165 (1992).

    Google Scholar 

  13. G. Magenes, R. Schmid, and J. Ventre, The role of smooth pursuit in suppression of post-rotational nystagmus, Aviation, Space and Environ. Med., 61:117–124 (1990).

    Google Scholar 

  14. D.S. Zee, The vestibulo-ocular reflex: clinical concepts, in: Models of Oculomotor Behavior and Control, B.L. Zuber ed., CRC Press (1981).

    Google Scholar 

  15. G.R. Barnes and R.D. Eason, Effects of visual and non-visual machanisms on the vestibulo-ocular reflex during pseudo-random head movements in man, J. Physiol., London, 395:383–400 (1988).

    Google Scholar 

  16. G.M. Gauthier and J.L. Vercher, Visual-vestibular interaction: vestibulo-ocular reflex suppression with head-fixed target fixation, Exp. Brain Res., 81:150–160 (1990).

    Article  Google Scholar 

  17. G.M. Gauthier, J.L. Semmlow, J.L. Vercher, C. Pedrono, and G. Obrecht, Adaptation of eye and head movements to reduced peripheral vision, in: Oculomotor Control and Cognitive Processes: Normal and Pathological Aspects, R. Schmid and D. Zambarbieri eds., Elsevier North Holland (1990).

    Google Scholar 

  18. B. Biguer and C. Prablanc, Modulation of the vestibulo-ocular reflex in eye-head orientation as a function of target distance in man, Progress in Oculomotor Research, A.L. Fuchs and W. Becker eds., Elsevier North Holland (1981).

    Google Scholar 

  19. D. Pélisson, C. Prablanc, and C. Urquizar, Vestibuloocular reflex inhibition and gaze saccade control characteristics during eye-head orientation in humans, J. Neurophysiol., 59:997–1013 (1988).

    Google Scholar 

  20. G.E. Grossman, R.J. Leigh, L.A. Abel, D.J. Lanska, and S.E. Thurston, Frequency and velocity of rotational head perturbations during locomotion, Exp. Brain Res., 70:470–476 (1988).

    Article  Google Scholar 

  21. E. Koening, J.H. Allum, and J. Dichgans, Visual-vestibular interaction upon nystagmus slow phase velocity in man, Acta Oto-Laryngol., 85:397–410 (1978).

    Article  Google Scholar 

  22. A. Bohmer and C.R. Pfaltz, On the interaction of vestibular and opto-kinetic nystagmus in man, ORL 41:121–128(1979).

    Article  Google Scholar 

  23. G.L. Zacharias and L.R. Young, Influence of combined visual and vestibular cues on human perception and control of horizontal rotation, Exp. Brain Res., 41:159–171 (1981).

    Article  Google Scholar 

  24. J.L. Vercher and G.M. Gauthier, Eye-head coordination: vestibulo-ocular reflex suppression with head-fixed target, J. Vestibular Res., 1:161–170(1991).

    Google Scholar 

  25. R.D. Tomlinson and D.A. Robinson, Is the vestibulo-ocular reflex cancelled by smooth pursuit? in: Progress in Oculomotor Research, A.F. Fuchs. and W. Becker eds., Elsevier North Holland (1981).

    Google Scholar 

  26. G.R. Barnes and Edge, Non-linear effects in visual suppression of vestibular nystagmus, Exp. Brain Res., 52:9–19(1983).

    Article  Google Scholar 

  27. B.N. Segal, Post-suppression vestibulo-ocular reflex in man: visual and non-visual mechanisms, Exp. Brain Res., 59:524–532 (1985).

    Google Scholar 

  28. A. Gonshor and G. Melvill-Jones, Extreme vestibulo-ocular reflex adaptation induced by prolonged optical reversal of vision, J. Physiol. (London), 256:381–414 (1976).

    Google Scholar 

  29. G.M. Gauthier, and D.A. Robinson, Adaptation of the human vestibuloocular reflex to magnifying lenses, Brain Res., 92:331–335 (1975).

    Article  Google Scholar 

  30. G.M. Gauthier and J.M. Hofferer, Eye tracking of self-moved targets in the absence of vision, Exp. Brain Res., 26, 121–139 (1976)

    Article  Google Scholar 

  31. J.L. Vercher, G.M. Gauthier, O. Guédon, J. Blouin, J. Cole, and Y. Lamarre, Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination, J. Neurophysiol., 76:1133–1144 (1996).

    Google Scholar 

  32. G.M. Gauthier, J.L. Vercher, F. Mussa Ivaldi, and E. Marchetti, Oculo-manual tracking of visual targets: control learning, coordination control and coordination model, Exp. Brain Res., 73:127–137 (1988).

    Article  Google Scholar 

  33. J.L. Vercher, M. Volle, and G.M. Gauthier, Dynamics of human visuo-oculo-manual coordination control in target tracking tasks, Aviat. Space Environ. Med., 64:500–506 (1993).

    Google Scholar 

  34. J.L. Vercher, D. Quaccia, and G.M. Gauthier, Oculo-manual coordination control: Respective role of visual and non-visual information in ocular tracking of self-moved targets, Exp Brain Res., 103:311–322 (1995).

    Article  Google Scholar 

  35. H. Hess, The Animal World, Life Science Edition (1965).

    Google Scholar 

  36. R. Held and N. Gottlieb, Technique for studying adaptation to disarranged hand-eye coordination, Perceptual & Motor Skills, 8:83–86 (1958).

    Article  Google Scholar 

  37. A.S. Kornheiser, Adaptation to laterally displaced vision: a review, Psychol. Bull, 83:783–816 (1976).

    Article  Google Scholar 

  38. R.B. Welch, Research on adaptation to rearranged vision: 1966–1974, Perception, 3:367–392 (1974).

    Article  Google Scholar 

  39. G.M. Redding and B. Wallace, Adaptive coordination and alignment of eye and hand, J. Motor Behavior, 25:75–88 (1993).

    Article  Google Scholar 

  40. G.M. Redding, S.D. Rader, and D.R. Lucas, Cognitive load and prism adaptation, J. Motor Behavior, 24:238–246(1992).

    Article  Google Scholar 

  41. A. Roby-Brami and Y. Burnod, Learning a new visuo-motor transformation: error correction and generalization, Cognitive Brain Res., 2:229–242 (1995).

    Article  Google Scholar 

  42. G.M. Gauthier, J.L. Vercher, G. Obrecht, and J.L. Semmlow, L’adaptation aux verres correcteurs, La Recherche, 263, 25:294–302 (1994).

    Google Scholar 

  43. D.A Robinson, Integrating with neurons, Ann. Rev. Neurosci., 12:33–45 (1989).

    Article  Google Scholar 

  44. H.L. Galiana and D. Guitton, Central organization and modelling of eye-head coordination during orienting gaze shifts, Annals of the New York Academy of Sciences, 656:452–471 (1992).

    Article  Google Scholar 

  45. E. Bizzi, N. Accornero, W. Chaple, and N. Hogan, Posture control and trajectory formation during arm movement, J. Neurosci., 4:2738–2744 (1984).

    Google Scholar 

  46. F.A. Mussa-Ivaldi, E. Bizzi, P. Morasso, and N. Hogan, Network models of motor systems with many degrees of freedom, in: Advances in Control Networks and Large-Scale Parallel Distributed Processing Models, M.D. Fraser ed., Ablex Publishing Corporation (1991).

    Google Scholar 

  47. L. Stark, G. Vossius, and L.R. Young, Predictive control of eye tracking movements, IRE Trans. on Human Factors in Electronics, 3:52–57 (1962).

    Article  Google Scholar 

  48. D.A. Robinson, J.L. Gordon, and S.E. Gordon, A model of smooth pursuit eye movement system, Biol. Cybern., 55:43–57 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gauthier, G.M., Vercher, JL., Blouin, J. (1997). Integrating Reflexes and Voluntary Behaviours: Coordination and Adaptation Controls in Man. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds) Human and Machine Perception. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5965-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5965-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7734-4

  • Online ISBN: 978-1-4615-5965-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics