Skip to main content

3D Cardiac Imaging of Electromechanical Coupling

  • Chapter
Analytical and Quantitative Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 430))

Abstract

A novel method for three dimensional (3D) electromechanical mapping of the heart is presented. The new method is based on utilizing special magnetically locatable catheters connected to a mapping and navigation system. The 3D electromechanical map of the chamber is reconstructed by sampling the location of the catheter tip throughout the cardiac cycle at a plurality of endocardial sites together with their local electrograms. The ability to spatially combine electrical and mechanical information may provide a useful tool for both research and clinical cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis T, Rothschild MA. The excitatory process in the dog’s heart. II. The ventricles. Philos Trans R Soc Lond B Biol Sci 1915;206:181–226.

    Article  Google Scholar 

  2. Josephson ME, Horowitz LN, Spielman SR, Waxman HL, Greenspan AM. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am J Cardiol 1982;49:207–220.

    Article  PubMed  CAS  Google Scholar 

  3. Josephson ME. Use of electrophysiological testing to select antiarrhythmic drug therapy for ventricular arrhythmia. In: Rosen MR, Janse MJ, Wit AL, eds. Cardiac Electrophysiology: A Textbook. Mount Kisco, NY: Futura; 1990:1137–1158.

    Google Scholar 

  4. Gallagher JJ, Kasell JH, Cox JL, Smith WM, Ideker RE, Smith WM. Techniques of intraoperative electrophysiologic mapping. Am J Cardiol 1982;49:221–240.

    Article  PubMed  CAS  Google Scholar 

  5. Jackman WM, Wang XZ, Friday KJ, Roman CA, Moulton KP, Beckman KJ, McClelland JH, Twidale N, Hazlitt HA, Prior MI, Margolis PD, Calarne JD, Overholt ED, Lazzara R. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med 1991;324:1605–1611.

    Article  PubMed  CAS  Google Scholar 

  6. Flowers NC, Horan LG. Body surface potential mapping. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. 2nd ed. Philadelphia, Pa: WB Saunders; 1995:1049–1067.

    Google Scholar 

  7. De Bakker JMT, Janse MJ, Van Cappelle FJL, Durrer D. Endocardial mapping by simultaneous recording of endocardial electrograms during cardiac surgery for ventricular aneurysm. J Am Coll Cardiol 1983;2:947–953.

    Article  PubMed  Google Scholar 

  8. Hafala R, Sarvard P, Tremblat G, Page P, Cardinal R, Molin F, Kus T, Nadean R. Three distinct patterns of ventricular activation in infarcted human hearts. An intraoperative cardiac mapping study during sinus rhythm. Circulation 1995;91:1480–1494.

    Article  Google Scholar 

  9. Eldar M. Percutaneous multielectrode endocardial mapping and ablation of ventricular tachycardia in the swine model. In: Sideman S, Beyar R (editors) Analytical and Quantitative Cardiology: From Genetics to Function, Plenum Publ, New York, 1997, Chapter 27.

    Google Scholar 

  10. Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME. Nonfluoroscopic, in vivo navigation and mapping technology. Nature Med 1996;2:1393–1395.

    Article  PubMed  CAS  Google Scholar 

  11. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electro-anatomical mapping of the heart: in vitro and in vivo accuracy results. Circulation 1997;95:1611–1622.

    Article  PubMed  CAS  Google Scholar 

  12. Fananapazir L, Cannon RO 3d, Tripodi D, Panza JA. Impact of dual-chamber permanent pacing in patients with obstructive hypertrophic cardiomyopathy with symptoms refractory to verapamil and beta-adrenergic blocker therapy. Circulation 1992;85:2149–61.

    Article  PubMed  CAS  Google Scholar 

  13. McAreavey D, Fananapazir L. Altered cardiac hemodynamic and electrical state in normal sinus rhythm after chronic dual-chamber pacing for relief of left ventricular outflow obstruction in hypertrophic cardiomyopathy. Am J Cardiol 1992;70:651–656.

    Article  PubMed  CAS  Google Scholar 

  14. Hochleitner M, Hortnagl H, Hortnagl H, Fridrich L, Gschnitzer F. Long-term efficacy of physiologic dual-chamber pacing in the treatment of end-stage idiopathic dilated cardiomyopathy. Am J Cardiol 1992;70:1320–1325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gepstein, L., Ben-Haim, S.A. (1997). 3D Cardiac Imaging of Electromechanical Coupling. In: Sideman, S., Beyar, R. (eds) Analytical and Quantitative Cardiology. Advances in Experimental Medicine and Biology, vol 430. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5959-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5959-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7731-3

  • Online ISBN: 978-1-4615-5959-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics