Skip to main content

Dynamic Interaction between Myocardial Contraction and Coronary Flow

  • Chapter
Analytical and Quantitative Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 430))

Abstract

Phasic coronary flow is determined by the dynamic interaction between central hemodynamics and myocardial and ventricular mechanics. Various models, including the waterfall, intramyocardial pump and myocardial structural models, have been proposed for the coronary circulation. Concepts such as intramyocardial pressure, local elastance and others have been proposed to help explain the coronary compression by the myocardium. Yet some questions remain unresolved, and a new model has recently been proposed, linking a muscle collagen fibrous model to a physiologically based coronary model, and accounting for transport of fluids across the capillaries and lymphatic flow between the interstitial space and the venous system. One of the unique features of this model is that the intramyocardial pressure (IMP) in the interstitial space is calculated from the balance of forces and fluid transport in the system, and is therefore dependent on the coronary pressure conditions, the myocardial function and the transport properties of the system. The model predicts a wide range of experimentally observed phenomena associated with coronary compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolin A. Circulatory System, Methods, blood flow determination by electromagnetic methods, in Glasser O (ed) Medical Physics,. Yearbook Publishers. Chicago 3:141–156,1960.

    Google Scholar 

  2. Vatner SF, Franklin D, Van Citters RL. Simultaneous comparison and calibration of Doppler and electromagnetic flowmeters. J Appl Physol 1970;29:907–910.

    CAS  Google Scholar 

  3. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992;85:1899–1911.

    Article  PubMed  CAS  Google Scholar 

  4. Wilson RF, Laughlin DE, Ackel PH, Chilian WM, Holida MD, Hartley CL, Armstrong ML, Marcus ML, White CAW. Transluminal subselective measurements of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985;72:82–92.

    Article  PubMed  CAS  Google Scholar 

  5. Kern MJ, Donohue TJ, Aguirre FV, Bache RG, Caracciolo EA, Ofili E, Labovitz AJ. Assessment of angiographically intermediate coronary artery stenosis using the Doppler flowwire. Am J Cardiol 1993;71:26D–33D.

    Article  PubMed  CAS  Google Scholar 

  6. Segal J, Kern MJ, Scot NA, King SB III, Doucette JW, Heuser RR, Ofili E Siegel R. Alternations of phasic coronary artery velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardol 1992;20:276–86.

    Article  CAS  Google Scholar 

  7. Ofili EO, Labovitz AJ, Kern MJ. Coronary flow velocity dynamics in normal and diseased arteries. Am J Cardiol 1993;71:3D–9D.

    Article  PubMed  CAS  Google Scholar 

  8. Armour JA, Randall WC. Canine left ventricular intramyocardial pressures. Am J Phys 1971;220:1833–1839.

    CAS  Google Scholar 

  9. Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 1989;257 (Heart Circ Physiol 26):H1936–H1944.

    PubMed  CAS  Google Scholar 

  10. Panerai RB, Chamberlain JH, Sayers B. Characterization of extravascular component of coronary resistance by instantaneous pressure-flow relationships in the dog. Circ Res 1979;45:378–390.

    Article  PubMed  CAS  Google Scholar 

  11. Rabbany SY, Kresh JY, Noordergraaf A. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol 1989;257 (Heart Circ Physiol 26):H357–H364.

    PubMed  CAS  Google Scholar 

  12. Van Winkle DM, Swafford AN, Downey JW. Subendocardial coronary compression in beating dog hearts is independent of pressure in the ventricular lumen. Am J Physiol 1991;261 (Heart Circ Physiol 30):H500–H505.

    PubMed  Google Scholar 

  13. Westerhof N. Intramyocardial pressure revisited. In: Cardiac Electrophysiology, Circulation, and Transport (Sideman S, Beyar R, editors). Kluwer Academic Publishers, New York 1991;237–243.

    Chapter  Google Scholar 

  14. Feigl EO, Neat GW, Huang AH. Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. J Mol Cell Cardiol 1990;22:375–390.

    Article  PubMed  CAS  Google Scholar 

  15. Caulfield JB, Borg TK. The collagen network of the heart. J Lab Invest 1979;40:364–372.

    CAS  Google Scholar 

  16. Manor D, Sideman S, Dinnar U, Beyar R. Analysis of the flow in the coronary epicardial arterial tree and intramyocardial circulation. Med & Biol Eng & Comput 1994;32(4):S133–S143.

    Article  CAS  Google Scholar 

  17. Hoffman JIE, Spaan JAE. Pressure-flow relations in coronary circulation. Physiol Rev 1990;70:331–390.

    PubMed  CAS  Google Scholar 

  18. Gould KL, Kirkeeide, RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990;15:459–474.

    Article  PubMed  CAS  Google Scholar 

  19. Laine GA, Granger HJ. Microvascular, interstitial & lymphatic interactions in normal heart. Am J Physiol 1985;249 (Heart Circ Physiol 18):H834–H842.

    PubMed  CAS  Google Scholar 

  20. Rodbard S. Capillary Control of Blood Flow and Fluid Exchange. Circ Res 1971;28–29 (Suppl. 1):1.51–1.58.

    Google Scholar 

  21. Beyar R, Caminker R, Manor D, Sideman S. Coronary flow patterns in normal and ischemic hearts: transmyocardial and artery to vein distribution. Ann Biomed Eng 1993;21:435–458.

    Article  PubMed  CAS  Google Scholar 

  22. Beyar R, Guerci A, Halperin HR, Tsitlik JR, Weisfeldt ML. Intermittent coronary sinus occlusion following coronary arterial ligation results in venous retroperfusion. Circ Res 1989;65:695–707.

    Article  PubMed  CAS  Google Scholar 

  23. Beyar R, Sideman S. Time-dependent coronary blood flow distribution in the left ventricular wall. Am J Physiol 1990;252:H417–H433.

    Google Scholar 

  24. Bruinsma P, Arts T, Dankelman J, Spaan JAE. Model of the coronary circulation based on pressure dependence of coronary resistance and capacitance. Basic Res Cardiol 1988;83:510–524.

    Article  PubMed  CAS  Google Scholar 

  25. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 1975;36:753–760.

    Article  PubMed  CAS  Google Scholar 

  26. Gordon RJ. A general mathematical model of coronary circulation. Am J Physiol 1974;226(3):608–615.

    PubMed  CAS  Google Scholar 

  27. Manor D, Beyar R, Sideman S. Pressure-flow characteristics of the coronary collaterals: A model study. Am J Physiol 1994;266 (Heart Circ Physiol 35):H310–H318.

    PubMed  CAS  Google Scholar 

  28. Judd RM, Mates RE. Coronary input impedance is constant during systole and diastole. Am J Physiol 1991;260 (Heart Circ Physiol 29):H1841–H1851.

    PubMed  CAS  Google Scholar 

  29. Baird RJ, Goldbach MM, De La Rocha A. Intramyocardial pressure: The persistence of its transmural gradients in the empty heart and its relationship to the myocardial oxygen consumption. J Thoracic Cardiovasc Surg 1970;59:810–823.

    CAS  Google Scholar 

  30. Arts T, Reneman RS. Interaction between intramyocardial pressure (IMP) and myocardial circulation. J Biomech Eng 1985;107:51–56.

    Article  PubMed  CAS  Google Scholar 

  31. Beyar R, Sideman S: Computer study of the left ventricular performance based on its fiber structure, sarcomere dynamics, and electrical activation propagation. Circ Res 1984;55:358–374.

    Article  PubMed  CAS  Google Scholar 

  32. Beyar R, Ben-Ari R, Gibbons-Kroeker CA, Tyberg JV, Sideman S. The effect of interconnecting collagen fibers on LV function and intramyocardial compression. Cardiovasc Res 1993;27(12):2254–2263.

    Article  PubMed  CAS  Google Scholar 

  33. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI. A theoretical model for myocardial blood flow. In: Cardiovascular Dynamics and Models, Proceedings of NIH-INSERM Workshops (Brun P, Chadwick RS, Levy BI, editors). INSERM, Paris, Vol. 183,1988;77–90.

    Google Scholar 

  34. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI. Phasic regional myocardial inflow and outflow: Comparison of theory and experiments. Am J Physiol 1990;258:H1687–H1698.

    PubMed  CAS  Google Scholar 

  35. Zinemanas D, Beyar R, and Sideman S. Effects of myocardial contraction on Coronary flow: An Integrated model. Annals Biomed Eng 1994;22(6):638–652.

    Article  CAS  Google Scholar 

  36. Zinemanas D, Beyar R, Sideman S. An integrated model of left ventricular muscle mechanics, coronary flow and fluid and mass transport. Am J Physiol 1995;268 (Heart Circ Physiol 37):H633–H645.

    PubMed  CAS  Google Scholar 

  37. Streeter DD, Spotnitx HM, Patel DP, Ross J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 1969;24:339–347.

    Article  PubMed  Google Scholar 

  38. Rumberger JAJ, Nerem RM, Muir WW. Coronary artery pressure development and wave transmission characteristics in the horse. Cardiovasc Res 1979;13:413–419.

    Article  PubMed  Google Scholar 

  39. Doucette JW, Goto M, Flynn AE, Austin RE Jr, Husseini W, Hoffman JIE. Effects of cardiac contraction and cavity pressure on myocardial blood flow. Am J Physiol 1993;265:H1342–H1352.

    PubMed  CAS  Google Scholar 

  40. Kouwenhoven E, Vergroesen I, Han Y, Spaan JAE. Retrograde coronary flow is limited by time varying elastance. Am J Physiol 1992;263:H484–H490.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beyar, R., Sideman, S. (1997). Dynamic Interaction between Myocardial Contraction and Coronary Flow. In: Sideman, S., Beyar, R. (eds) Analytical and Quantitative Cardiology. Advances in Experimental Medicine and Biology, vol 430. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5959-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5959-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7731-3

  • Online ISBN: 978-1-4615-5959-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics