Skip to main content

How Cardiac Contraction Affects the Coronary Vasculature

  • Chapter
Analytical and Quantitative Cardiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 430))

Abstract

We modeled the influence of cardiac contraction on maximally dilated coronary blood vessels, whether single or in juxtaposition, taking into account the nonlinear material properties of both the vascular wall and the myocardium. We calculated pressure-area relations of single, embedded coronary blood vessels, and used these relations to calculate diastolic and systolic coronary pressure-flow relations in a model of the coronary vasculature. The model shows that the change in myocardial material properties during contraction can explain the decrease in coronary vessel area and coronary flow generally observed in experiments. The model also shows that arterioles can be protected from the compressive action of the cardiac muscle by the presence of accompanying venules, which is favorable for coronary blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregg DE. The coronary circulation in health and disease. Philadelphia: Lea and Febiger; 1950.

    Google Scholar 

  2. Downey JM, Kirk ES. Inhibition of coronary flow by a vascular waterfall mechanism. Circ Res 1975;36:753–760.

    Article  PubMed  CAS  Google Scholar 

  3. Arts MGJ. A mathematical model of the dynamics of the left ventricle and the coronary circulation. Ph.D. Dissertation, The Netherlands, State Univ. of Limburg, 1978.

    Google Scholar 

  4. Spaan JAE, Breuls NPW, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in anesthetized dog. Circ Res 1981;49:584–593.

    Article  PubMed  CAS  Google Scholar 

  5. Krams R, van Haelst ACTA, Sipkema P, Westerhof N. Can coronary systolic-diastolic flow differences be related to left ventricular pressure or time-varying intramyocardial elastance? Bas Res Cardiol 1989;84:149–159.

    Article  CAS  Google Scholar 

  6. Krams R, Sipkema P, Westerhof N. Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure. Am J Physiol 1990;258:H1889–H1898.

    PubMed  CAS  Google Scholar 

  7. Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 1989;257:H1471–H1479.

    PubMed  CAS  Google Scholar 

  8. Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 1989;257:H1936–H1944.

    PubMed  CAS  Google Scholar 

  9. Allaart CP, Westerhof N. Effect of length and contraction on coronary perfusion in isolated perfused papillary muscle of rat heart. Am J Physiol 1996;271:H447–H454.

    PubMed  CAS  Google Scholar 

  10. Bouma P, Sipkema P, Westerhof N. Vasomotor tone affects diastolic coronary flow and flow impediment by cardiac contraction similarly. Am J Physiol 1994;266:H1944–H1950.

    PubMed  CAS  Google Scholar 

  11. Bouma P, Sipkema P, Westerhof N. Coronary arterial flow impediment during systole is little affected by capacitive effects. Am J Physiol 1993;264:H715–H721.

    PubMed  CAS  Google Scholar 

  12. Kouwenhoven E, Vergroesen I, Han Y, Spaan JAE. Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 1992;263:H484–H490.

    PubMed  CAS  Google Scholar 

  13. Streeter DD, Bassett DL. An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat Rec 1966:155:503–511.

    Article  Google Scholar 

  14. Humphrey JD, Strumpf RK, Yin FCP. Determination of a constitutive relation for passive myocardium: I. a new functional form. ASME J Biomech Eng 1990;112:333–339.

    Article  CAS  Google Scholar 

  15. Humphrey JD, Strumpf RK, Yin FCP. Determination of a constitutive relation for passive myocardium: II. parameter estimation. ASME J Biomech Eng 1990;112:340–346.

    Article  CAS  Google Scholar 

  16. Schouten VJA, Allaart CP, Westerhof N. Effect of perfusion pressure on force of contraction in thin papillary muscles and trabeculae from rat heart. J Physiol (London) 1992;451:585–604.

    CAS  Google Scholar 

  17. Glantz SA, Kernoff RJ. Muscle stiffness determined from canine left ventricular pressure-volume curves. Circ Res 1975;37:787–794.

    Article  PubMed  CAS  Google Scholar 

  18. Ter Keurs HEDJ, Rijnsburger WH, Van Heuningen R, Nagelsmit MJ. Tension development and sarcomere length in rat cardiac trabeculae: evidence of length-dependent activation. Circ Res 1980;46:703–714.

    Article  PubMed  Google Scholar 

  19. Vis MA, Sipkema P, Westerhof N. Modeling pressure-area relations of coronary blood vessels embedded in cardiac muscle in diastole and systole. Am J Physiol 1995;268:H2531–H2543.

    PubMed  CAS  Google Scholar 

  20. Halperin HR, Chew PH, Weisfeldt ML, Sagawa K, Humphrey JD, Yin FCP. Transverse stiffness: a method for estimation of myocardial wall stress. Circ Res 1987;61:695–703.

    Article  PubMed  CAS  Google Scholar 

  21. Strumpf RK, Humphrey JP, Yin FCP. Biaxial mechanical properties of passive and tetanized canine diaphragm. Am J Physiol 1993;265:H469–H475.

    PubMed  CAS  Google Scholar 

  22. Lin DH, Yin FCP. Biaxial mechanical properties of barium-activated left ventricular myocardium. FASEB J 1995;9:A559,#3239.

    Google Scholar 

  23. Giezeman MJMM. Static and dynamic pressure-volume relations of isolated blood vessels. Ph.D. Dissertation, The Netherlands, Univ. of Amsterdam, 1992.

    Google Scholar 

  24. Davis MJ and Sikes PJ. Myogenic responses of isolated arterioles: test for a rate-sensitive mechanism. Am J Physiol 1990;259:H1890–H1900.

    PubMed  CAS  Google Scholar 

  25. Langewouters GJ, Wesseling KH, Goedhard WJA. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 1984;17:425–435.

    Article  PubMed  CAS  Google Scholar 

  26. Vis MA, Sipkema P, Westerhof N. Compression of intramyocardial arterioles during cardiac contraction is attenuated by accompanying venules. Am J Physiol 1997; in press.

    Google Scholar 

  27. Vis MA, Sipkema P, Westerhof N. Modeling coronary pressure-flow relations in diastole and systole. Am J Physiol 1997; in press.

    Google Scholar 

  28. VanBavel E, Spaan JAE. Branching patterns in the porcine coronary arterial tree: estimation of flow heterogeneity. Circ Res 1992;71:1200–1212.

    Article  PubMed  CAS  Google Scholar 

  29. Kassab GS, Rider CA, Tang NJ, Fung YCB. Morphometry of pig coronary arterial trees. Am J Physiol 1993;265:H350–H365.

    PubMed  CAS  Google Scholar 

  30. Kassab GS, Fung YCB. Topology and dimensions of pig coronary capillary network. Am J Physiol 1994;267:H319–H325.

    PubMed  CAS  Google Scholar 

  31. Kassab GS, Lin DH, Fung YCB. Morphometry of pig coronary venous system. Am J Physiol 1994;267:H2100–H2113.

    PubMed  CAS  Google Scholar 

  32. Westerhof N, Allaart CP, Sipkema P. Effect of contraction on arterial inflow and capillary size of rat papillary muscle. Heart & Vessels 1992;suppl. 8:14, KL-25.

    Google Scholar 

  33. Goto M, Flynn AE, Doucette JW, Jansen CMA, Stork MM, Coggins DL, Muehrke DD, Husseini WK, Hoffman JIE. Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol 1991;261:H1417–H1429.

    PubMed  CAS  Google Scholar 

  34. Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large-and small-vessel intramyocardial blood volume. Circ Res 1991;68:217–225.

    Article  PubMed  CAS  Google Scholar 

  35. Westerhof N. Physiological hypotheses — intramyocardial pressure: a new concept, suggestions for measurement. Bas Res Cardiol 1990;85:105–119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Westerhof, N., Sipkema, P., Vis, M.A. (1997). How Cardiac Contraction Affects the Coronary Vasculature. In: Sideman, S., Beyar, R. (eds) Analytical and Quantitative Cardiology. Advances in Experimental Medicine and Biology, vol 430. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5959-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5959-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7731-3

  • Online ISBN: 978-1-4615-5959-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics