Skip to main content

Overcoming Myelin-Associated Inhibition of Axonal Regeneration after CNS Injury

  • Chapter
Cell Biology and Pathology of Myelin

Part of the book series: Altschul Symposia Series ((ALSS,volume 4))

  • 119 Accesses

Abstract

After damage to the peripheral nervous system (PNS), a cascade of events unfold that results in the regeneration of some injured axons towards peripheral targets with an accompanying restoration of function [Pollock, 1995; Terenghi, 1995; Brecknall and Fawcett, 1996]. Our understanding of the mechanisms supporting PNS regeneration has been characterized over the past 5 decades, with the specific roles of glial cells (e.g. Schwann cells) [Bunge, 1994], invading macrophages [Perry and Brown, 1992], extracellular matrix [Martini, 1994] and growth factors [Bunge, 1993] being well documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bähr M and Przyrembel C (1995): Myelin from peripheral and central nervous system is a non-permissive substrate for retinal ganglion cell axons. Exp. Neurol. 134: 87–93.

    Article  PubMed  Google Scholar 

  • Bandtlow CE Schmidt MF Hassinger TD Schwab ME and Kater SB (1993): Role of intercellular calcium in NI35-evoked collapse of neuronal growth cones. Science 259: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Bandtlow CE and Schwab ME (1991): Purification and biochemical characterization of rat and bovine CNS myelin associated neurite growth inhibitors NI-35 and NI-250. Soc. Neurosci. Abstr. 17: 1495.

    Google Scholar 

  • Bandtlow CE Zachleder T and Schwab ME (1990): Oligodendrocytes arrest neurite growth by contact inhibition. J. Neurosci. 10: 3837–3848.

    PubMed  CAS  Google Scholar 

  • Bartsch U Bartsch S Dörries U and Schachner M (1992): Immunohistological localization of tenascin in the developing and lesioned adult mouse optic nerve. Eur. J. Neurosci. 4: 338–352.

    Article  Google Scholar 

  • Bartsch U Pesheva M Raff M and Schachner M (1993): Expression ofJanusin (J1–160/180): in the retina and optic nerve of the developing and adult mouse. Glia 9: 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Bastmeyer M Beckmann M Schwab ME and Stuermer CAO (1991): Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not by goldfish optic nerve tract oligodendrocyte-like cells and fish CNS myelin. J. Neurosci. 11: 626–650.

    PubMed  CAS  Google Scholar 

  • Beattie MS Bresnahan JC and Lopate G (1990): Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs. J. Neurobiol. 21: 1108–1122.

    Article  PubMed  CAS  Google Scholar 

  • Bekoff A (1976): Ontogeny of leg motor output in the chick embryo: a neural analysis. Brain Res. 106: 271–291.

    Article  PubMed  CAS  Google Scholar 

  • Benstead JPM Dobbing J Morgan RS Reid RTW and Payling-Wright G (1957): Neuroglial development and myelination in the spinal cord of the chick embryo. J. Embryol. Exp. Morph. 5: 428–437.

    Google Scholar 

  • Bernhardt R (1989): Axonal pathfinding during the regeneration of the goldfish optic pathway. J. Comp. Neurol. 284: 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund A Katzman R Stenevi U and West KA (1971): Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurons in the rat spinal cord. Brain Res. 31: 21–31

    Article  PubMed  CAS  Google Scholar 

  • Bradl M and Linnington C (1996): Animal models of demyelination. Brain Pathol. 6: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Bray GM Villegas-Perez MP Vidal-Sanz M and Aguayo AJ (1987): The use of peripheral nerve grafts to enhance neuronal survival promote growth and permit terminal reconnections in the central nervous system. J. Exp. Biol. 132: 5–19.

    PubMed  CAS  Google Scholar 

  • Brecknall JE and Fawcett JW (1996): Axonal regeneration. Biol. Rev. Cam. Phil. Soc. 71: 227–355.

    Article  Google Scholar 

  • Bregman BS Kunkel-Bagden E Reier PJ Ning Dai H McAtee M and Gao D (1993): Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp. Neurol. 123: 3–16.

    Article  Google Scholar 

  • Bregman BS Kunkel-Bagden E Schnell L Dal HN Gao D and Schwab ME (1995): Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors Nature 378: 498–501.

    CAS  Google Scholar 

  • Bunge RP (1993): Expanding roles for the Schwann cell: ensheathment myelination tropism and regeneration. Curr. Op. Neurobiol. 3: 805–809.

    Article  PubMed  CAS  Google Scholar 

  • Bunge RP (1994): The role of the Schwann cell in trophic support and regeneration. J. Neurol. 242: S19–21.

    Article  PubMed  CAS  Google Scholar 

  • Carbonetto S Evans D and Cochard P (1987): Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems. J. Neurosci. 7: 610–620.

    PubMed  CAS  Google Scholar 

  • Caroni P and Schwab ME (1988a): Antibody against myelin-associated inhibitor of neurite outgrowth neutralizes non-permissive substrate properties of CNS white matter. Neuron 1: 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Caroni P and Schwab ME (1988b): Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106: 1281–1288.

    Article  PubMed  CAS  Google Scholar 

  • Cheng H Cao Y and Olsen L (1996): Spinal cord repair in adult paraplegic rats: partial restoration of hindlimb function. Science 273: 510–513.

    Article  PubMed  CAS  Google Scholar 

  • Cohen AH Mackler SA and Selzer ME (1988): Behavioral recovery following spinal transection: functional regeneration in the lamprey CNS. Trends Neurosci. 11: 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Commissiong JW and Toffano G (1989): Complete spinal cord transection at different postnatal ages: recovery of motor coordination correlated with spinal cord catecholamines. Exp. Brain Res. 78: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Crutcher KA (1989): Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: extensive outgrowth on gray matter but little growth on white matter. Exp. Neurol. 104: 39–54.

    Article  PubMed  CAS  Google Scholar 

  • David S and Aguayo AJ (1981): Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214: 931–933.

    Article  PubMed  CAS  Google Scholar 

  • Davis GR and McClellan AD (1994): Extent and time course of restoration of descending brain stem projections in spinal-cord transected lamprey. J. Comp. Neurol. 344: 65–82.

    Article  PubMed  Google Scholar 

  • DeBallard M-E Tang S Mukhopadhyay G Shen Y-J and Filbin M (1996): Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell. Neurosci. 7: 89–101.

    Article  Google Scholar 

  • Dorfman SH Fry J.M and Silberberg DH (1979): Antiserum induced demyelination inhibition in vitro without complement. Brain Res. 177: 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Dousset V Brochet B Vital A Gross C Benazzouz A Boullerne A Bidabe AM Gin AM and Caille JM (1995): Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. Am. J. Neuroradiol. 16: 225–231.

    PubMed  CAS  Google Scholar 

  • Dow KE Ethell DW Steeves JD and Riopelle RJ (1994): Molecular correlates of spinal cord repair in the embry-onic chick: heparan sulphate and chondroitin sulphate proteoglycans. Exp. Neurol. 128: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Dubios-Dalcq M Niedieck B and Buyse M (1970): Action of anti-cerebroside sera on myelinated tissue cultures.Pathol. Eur. 5: 331–347.

    Google Scholar 

  • Dyer CA and Benjamins JA (1990): Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J. Cell Biol. 111: 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Dyer JK Keirstead HS and Steeves JD (1995): Immunological and ultrastructural studies of adult chick and mouse myelin after intraspinal injection of serum complement proteins and myelin specific antibodies. Soc. Neurosci. Abstr. 21 (1): 313.

    Google Scholar 

  • Dyer JK and Steeves JD (1996): Regeneration of descending brain stem-spinal and corticospinal axons after immunological myelin disruption of the adult rat spinal cord. Soc. Neurosci. Abstr. 22 (1): 764.

    Google Scholar 

  • Fawcett JW (1992): Intrinsic neuronal determinants of regeneration. Trends Neurosci. 15: 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW Rokos J and Bakst I (1989): Oligodendrocytes repel axons and cause axonal growth cone collapse. J. Cell Sci. 92: 93–100.

    PubMed  Google Scholar 

  • Filbin M (1995): Myelin-associated glycoprotein: a role in myelination and in the inhibition of axonal regeneration ? Curr. Op. Neurobiol. 5: 588–595.

    Article  PubMed  CAS  Google Scholar 

  • Foran DR and Peterson A.0 (1992): Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac-Z transgene. J. Neurosci. 12: 4890–4897.

    Google Scholar 

  • Forehand CJ and Farel P.B (1982): Anatomical and behavioral recovery from the effects of spinal cord transection: dependence on metamorphosis in anuran larvae..1. Neurosci. 2: 654–662.

    CAS  Google Scholar 

  • Fry JM Weissbarth S Lehrer GM and Burnstein MB (1974): Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelination in cord tissue cultures. Science 183: 540–542.

    Article  PubMed  CAS  Google Scholar 

  • Glover J (1993): The development of brain stem projections to the spinal cord in the chicken embryo. Brain Res. Bull. 30: 265–272.

    CAS  Google Scholar 

  • Glover J and Pettursdottir G (1991): Regional specificity of developing reticulospinal vestibulospinal and vestibulo-ocular projections in the chicken embryo. J. Neurobiol. 22: 353–376.

    Article  PubMed  CAS  Google Scholar 

  • Grierson JP Petroski RE Ling SF and Geller HM (1990): Astrocyte topography and tenascin/cytotactin expression: correlation with the ability to support neuritic outgrowth. Dev. Brain Res. 55: 11–19.

    Article  CAS  Google Scholar 

  • Guénard V Kleitman N Morrissey TK Bunge RP and Aebischer P (1992): Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration..1. Neuro-sci. 12: 3310–3320.

    Google Scholar 

  • Hartman BK Agrawal HC Kalmbach S and Shearer WTJ (1979): A comparative study of the immunohistochemical localization of basic protein to myelin and oligodendrocytes in rat and chicken brain..1. Comp. Neurol. 188: 273–290.

    Article  CAS  Google Scholar 

  • Hasan SJ Nelson BH Valenzuela JI Keirstead HS Schull SE Ethell DW and Steeves JD (1991): Functional repair of transected spinal cord in embryonic chick. Restor. Neurol. Neurosci. 2: 137–154.

    PubMed  CAS  Google Scholar 

  • Hasan SJ Keirstead HS Muir GD and Steeves JD (1993): Axonal regeneration contributes to repair of injured brain stem-spinal neurons in embryonic chick. J. Neurosci. 13: 492–507.

    PubMed  CAS  Google Scholar 

  • Herndon ME and Lander AD (1990): A diverse set of developmentally regulated proteoglycans is expressed in the rat central nervous system. Neuron 4: 949–961.

    Article  PubMed  CAS  Google Scholar 

  • Houle JD (1991): Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts. Exp. Neurol. 113: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Hruby S Alroul EC-Jr and Seil FI (1977): Synthetic galactocerebroside evoke myelination-inhibiting antibodies. Science 195: 173–175.

    Article  PubMed  CAS  Google Scholar 

  • lwashita Y Kawaguchi S and Murata M (1994): Restoration of function by replacement of spinal cord segments in the rat. Nature 367: 167–170.

    Article  Google Scholar 

  • Keirstead HS Hasan SJ Muir GD and Steeves JD (1992): Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord. Proc. Natl. Acad. Sci. (USA): 89: 11664–11668.

    Article  CAS  Google Scholar 

  • Keirstead HS Dyer JK Sholomenko GN McGraw J Delaney KR and Steeves JD (1995): Axonal regeneration and physiological activity following transection and immunological disruption of myelin within the hatchling chick spinal cord. J. Neurosci. 15 (10): 6963–6974.

    PubMed  CAS  Google Scholar 

  • Keller F Rubin B Oesch B and Schwab ME (1993): Purification and characterization of a neurite growth inhibitor from CNS myelin. Soc. Neurosci. Abstr. 19: 877.

    Google Scholar 

  • Kolodkin AL Matthes DJ and Goodman CS (1993): The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75: 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  • Lang DM Rubin BP Schwab ME and Stuermer CAO (1995): CNS myelin and oligodendrocytes of the Xenopus spinal cord–but not optic nerve–are nonpermissive for axon growth. J. Neurosci. 15: 99–109.

    PubMed  CAS  Google Scholar 

  • Laywell ED Dörries U Bartsch U Faissner A Schachner M and Steindler DA (1992): Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc. Natl. Acad. Sci. (USA): 89: 2634–2638.

    Google Scholar 

  • Levine JM (1994): Increased expression of the NG2 chondroitin-sulphate proteoglycan after brain injury. J. Neurosci. 14: 4716–4730.

    PubMed  CAS  Google Scholar 

  • Li D Field PM and Raisman G (1995): Failure of axon regeneration in postnatal rat. Eur. J. Neurosci. 7: 1164–1171.

    Article  PubMed  CAS  Google Scholar 

  • Ludwin SK (1978): Central nervous system demyelination and remyelination in the mouse: and ultrastructural study of cuprizone toxicity. Lab. Invest. 39: 597–612.

    PubMed  CAS  Google Scholar 

  • Luo Y Raible D and Raper JA (1993): Collapsin: a protein in the brain that induces the collapse and paralysis of neuronal growth cones. Cell 75: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Lurie DI and Selzer ME (1991): Axonal regeneration in the adult lamprey spinal cord. J. Comp. Neurol. 306: 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Macklin WB and Weill CL (1985): Appearance of myelin proteins during development in the chick central nervous system. Dev. Neurosci. 7: 170–178.

    Article  PubMed  CAS  Google Scholar 

  • Martin GF Ghooray GT Wang XM Xu XM and Zou XC (1994): Models of spinal cord regeneration. Prog. Brain Res. 103: 175–202.

    Google Scholar 

  • Martini R (1994): Expression and functional roles of neural cell surface molecules and extracellular matrix com-ponents during development and regeneration of peripheral nerves. J. Neurocytol. 23: 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Mastiglia F Carroll W and Jennings A (1989): Spinal cord lesions induced by anti-galactocerebroside serum. Clin.Exp. Neurol. 26: 33–44.

    Google Scholar 

  • McClellan AD (1990): Locomotor recovery in spinal-transected lamprey: role of functional regeneration of de-scending axons from brain stem locomotor command neurons. Neuroscience 37: 781–798.

    Article  PubMed  CAS  Google Scholar 

  • McConnell J and Sechrist J (1980): Identification of early neurons in the brain stern and spinal cord. I. An autora-diographic study in the chick. J. Comp. Neurol. 192: 769–783.

    CAS  Google Scholar 

  • McKeon RJ Schreiber RC Rudge JS and Silver J (1991): Reduction of neurite outgrowth in a model of filial scarring following CNS injury is correlated with the expression of inhibitory molecules on astrocytes. J. Neurosci. 11: 3398–3411.

    Google Scholar 

  • McKerracher L David S Jackson DL Kottis V Dunn RJ and Braun PE (1994): Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite outgrowth. Neuron 13: 805–811.

    Google Scholar 

  • Melnick RL Mahler J Bucher JR Thompson M Hejmancik M Ryan MJ and Mezza LE (1994): Toxicity of dietho-lamine. I. Drinking water and topical application exposures in F344 rats. J. Appl. Toxicol. 14: 1–9.

    CAS  Google Scholar 

  • Mitchell J and Caren CA (1982): Degeneration of non-myelinated axons in the rat sciatic nerve following lysolecithin injection. Acta Neuropath. 56: 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Mocchetti I and Wrathall JR (1995): Neurotrophic factors in central nervous system trauma. J. Neurotrauma. 12: 853–870.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery CT and Robson JA (1993): Implants of cultured Schwann cells support axonal growth in the central nervous system of adult rats. Exp. Neurol. 122: 107–124.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey TK Kleitman N and Bunge RP (1991): Isolation and functional characterization of Schwann cells isolated from adult peripheral nerves. J. Neurosci. 11: 2433–2442.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay G Doherty P Walsh FS Crocker PR and Filbin MT (1994): A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13: 757–767.

    Google Scholar 

  • Ng WP Cartel N Roder.I Roach A and Lozano A (1996): Human central nervous system myelin inhibits neurite outgrowth. Brain Res. 720: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls J and Saunders N (1995): Regeneration of immature mammalian spinal cord after injury. Trends Neuro-sci. 19: 229–234.

    Article  Google Scholar 

  • O’Donovan M Sernagor E Sholomenko G Ho S Antal M and Yee W (1992): Development of spinal motor networks in the chick embryo. J. Exp. Zool. 261: 261–273.

    Google Scholar 

  • Okado N and Oppenheim RW (1985): The onset and development of descending pathways to the spinal cord in the chick embryo. J. Comp. Neurol. 232: 143–161.

    Article  PubMed  CAS  Google Scholar 

  • Oohira A Matsui F and Katho-Semba R (1991): Inhibitory effects of brain chondroitin sulphate proteoglycans on neurite outgrowth from PC I2D cells. J. Neurosci. 1 I: 822–827.

    Google Scholar 

  • Ozawa K Saida T Saida K Nishitani H and Kameyama M (1989): In vivo CNS demyelination mediated by antigalactocerebroside antibody. Acta Neuropathol. 77: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Paìno CL Fernandez-Valle C Bates ML and Bunge MB (1994): Regrowth of axons in lesioncd adult spinal cord: promotion by implants of cultured Schwann cells. J. Neurocytol. 23: 433–452.

    Article  PubMed  Google Scholar 

  • Perry VH and Brown MC (1992): Role of macrophages in peripheral nerve degeneration and repair. Bioessays 14: 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Pesheva P Spiess E and Schachner M (1989):.11–160 and J1–180 are oligodendrocyte-secreted nonpermissive substrates for cell adhesion. J. Cell Biol. 109:1765–1778.

    Google Scholar 

  • Pollock M (1995): Nerve regeneration. Curr. Op. Neurol. 8: 354–358.

    Article  CAS  Google Scholar 

  • Ramon-y-Cajal S (1928): Degeneration and Regeneration of the Nervous System: (English translation by Raoul M. May ): Hafner New York 1959.

    Google Scholar 

  • Ranscht B Clapshaw PA Price J Noble M and Seifert W (1982): Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc. Natl. Acad. Sci. (USA): 79: 2709–2713.

    Google Scholar 

  • Reier RJ Anderson DK Thompson FJ and Stokes BT (1992): Neural tissue transplantation and CNS trauma: anatomical and functional repair of the injured spinal cord. J. Neurotrauma. 9: 5223–242.

    Google Scholar 

  • Rich KM (1992): Neuronal death after trophic factor deprivation. J. Neurotrauma. 9: 561–69.

    Google Scholar 

  • Richardson PM (1991): Neurotrophic factors in regeneration. Curr. Op. Neurobiol. 1: 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM McGuinness UM and Aguayo AJ (1980): Axons from CNS neurons regenerate into PNS grafts. Nature 284: 264–265.

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM Issa VM and Aguayo AJ (1984): Regeneration of long spinal axons in the rat. J. Neurocytol. 13: 165–182.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M (1992): Central nervous system demyelination and remyelination in multiple sclerosis and viral models of disease. J. Neuroimmunol. 40: 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Saunders NR Balkwill P Knott G Habgood MD Mollgard K Treherne JM and Nicholls JG (1992): Growth of axons through a lesion in the intact CNS fetal rat maintained in long-term culture. Proc. R. Soc. Lond. B. Biol. 250: 171–180.

    Google Scholar 

  • Savio T and Schwab ME (1989): Rat CNS white matter but not gray matter is non-permissive for neuronal cell adhesion and fiber outgrowth. J. Neurosci. 9: 1126–1133.

    PubMed  CAS  Google Scholar 

  • Schnell L and Schwab ME (1990): Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Schnell L Schneider R Kolbeck R Barde Y-A and Schwab ME (1994): Neurotrophin-3 enhances sprouting of corti-cospinal tract during development and after adult spinal cord lesion. Nature 367: 170–173.

    Article  PubMed  CAS  Google Scholar 

  • Schwab ME and Caroni P (1988): Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite out-growth and fibroblast spreading in vitro. J. Neurosci. 8: 2381–2393.

    PubMed  CAS  Google Scholar 

  • Schwab ME and Thoenen H (1985): Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J. Neurosci. 5: 2415–2423.

    PubMed  CAS  Google Scholar 

  • Schwartz M (1993): Nwe light on nerve regeneration in the mammalian nervous system. Endevour. 17: 38–40.

    Article  CAS  Google Scholar 

  • Schwegler G Schwab ME and Kapthammer JP (1995): Increased collateral sprouting of primary afferents in the myelin-free spinal cord. J. Neurosci. 15: 2756–2767.

    PubMed  CAS  Google Scholar 

  • Sergott RC Brown MJ Silberberg DH and Lisak RPJ (1984): Antigalactocerebroside serum demyelinates optic nerve in vivo. J. Neurol. Sci. 64: 297–303.

    Google Scholar 

  • Sharma SC Jadhao AG and Rao PD (1993): Regeneration of supraspinal projection neurons in the adult goldfish. Brain Res. 620: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Shiga T Kunzi R and Oppenheim RW (1991): Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo. J. Comp. Neurol. 305: 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu I Oppenheim RW O’Brien M and Schneiderman A (1990): Anatomical and functional recovery following spinal cord transection in the chick embryo. J. Neurobiol. 21: 918–937.

    Google Scholar 

  • Sholomenko GN and O’Donovan M (1995): Development and characterization of pathways descending to the spinal cord in the developing chick. J. Neurophys. 73: 1223–1233.

    CAS  Google Scholar 

  • Sholomenko GN and Steeves JD (1987): Effects of selective spinal cord lesions on hind limb locomotion in birds. Exp. Neurol. 95: 403–418.

    Article  PubMed  CAS  Google Scholar 

  • Sholomenko GN Funk GD and Steeves JD (1991a): Locomotor activities in the decerebrate bird without phasic afferent input. Neuroscience 40: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Sholomenko GN Funk GD and Steeves JD (199 lb): Avian locomotion activated by brain stem infusion of neurotransmitter agonists and antagonists. I. Acetylcholine excitatory amino acids and substance P. Exp. Brain Res. 85: 659–673.

    Google Scholar 

  • Sholomenko GN Funk GD and Steeves JD (1991c): Avian locomotion activated by brain stem infusion of neuro-transmitter agonists and antagonists. Il gama-Aminobutyric acid. Exp. Brain Res. 85: 674–681.

    Article  PubMed  CAS  Google Scholar 

  • Sivon T Schwab ME and Schwartz M (1994): Presence of growth inhibitors in fish optic nerve myelin: post injury changes. J. Comp. Neurol. 343: 237–246.

    Article  Google Scholar 

  • Siegal JD Kliot M Smith GM and Silver J (1990): A comparison of the regeneration potential of dorsal root fibers into gray or white matter of the adult rat spinal cord. Exp. Neurol. 109: 90–97.

    Article  PubMed  CAS  Google Scholar 

  • Snow D.M Lemmon V Carrino DA Caplan AI and Silver J (1990): Sulphated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol. 109: 111–130.

    Google Scholar 

  • Sommer I and Schachner M (1981): Monoclonal antibodies (01 and 04): to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83: 311–327.

    Article  PubMed  CAS  Google Scholar 

  • Spring J Beck K and Chiquet-Ehrismann R (1989): Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell 59: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Steeves JD Hasan SJ Keirstead HS Muir GD Ethell DW Pataky DM McBride CB Rott ME and Wisniewska AB (1993): The embryonic chicken as a model for central nervous system injury and repair. Neuroprotocols 3: 35–43.

    Google Scholar 

  • Steeves JD Sholomenko GN and Webster DMS (1987): Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds. Brain Res. 401: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Stoner GL (1993): Polyoma virus models of brain infection and the pathogenesis of multiple sclerosis. Brain Pathol. 3: 213–227.

    Article  PubMed  CAS  Google Scholar 

  • Sweasey D Patterson DS and Leadon DP (1982): Chemical composition of the spinal cord in the normal developing fetus and in the premature foal. J. Reprod. Fert. Suppl. 32: 563–567.

    CAS  Google Scholar 

  • Taylor J Pesheva P and Schachner M (1993): Influence of janusin and tenascin on growth cone behavior in vitro. J. Neurosci. Res. 35: 347–362.

    Article  PubMed  CAS  Google Scholar 

  • Tello F (1911): La influencia del neurotropismo en la regeneracion de los centros nerviosos. Trabajos del Lab de Invest. Biol. book 9: 124–159.

    Google Scholar 

  • Terenghi G (1995): Peripheral nerve injury and regeneration Histol. Histopath. 10: 709–718.

    CAS  Google Scholar 

  • Tetzlaff W Alexander S Miller F and Bisby M (1991): Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J. Neurosci. 11: 2528–2544.

    Google Scholar 

  • Treherne JM Woodward SKA Varga ZM Ritchie JM and Nicholls JG (1992): Restoration of conduction and growth of axons through injured spinal cord of neonatal opossum in culture. Proc. Natl. Acad. Sci. (USA): 89: 431–434.

    Google Scholar 

  • Tsunoda I and Fujina RS (1996): Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J. Neuropathol. Exp. Neurol. 55: 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Tuttle R and Matthew WD (1991): An in vitro bioassay for neurite growth using cryostat sections of nervous tissue as substratum. J. Neurosci. Methods 39: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela JI Hasan SJ and Steeves JD (1990): Stimulation of the brain stem reticular formation evokes locomotor activity in embryonic chicken in ovo. Dev. Brain Res. 56: 13–18.

    Article  CAS  Google Scholar 

  • Vandervelde M and Zurbriggen A (1995): The neurobiology of canine distemper virus infection. Vet. Microbiol. 44: 271–280.

    Article  Google Scholar 

  • Varga ZM Bandtlow CE Erulkar SD Schwab ME and Nicholls JG (1995): The critical period of repair of CNS neonatal opossum (Monodelphis domestica): in culture: correlation with development of glial cells myelin and growth inhibitory molecules. Eur. J. Neurosci. 7: 2119–2129.

    Google Scholar 

  • Waller AV (1850): Experiments on the section of the glossopharyngeal and hypoglossal nerves in the frog and observation on the alterations produced thereby in the structure of their primitive fibers. Phil. Trans. R. Soc. London (Biol.). 140: 423.

    Article  Google Scholar 

  • Wanner M Lang DM Bandtlow CE Schwab ME Bastmeyer M and Stuermer CA (1995): Reevaluation of the growth-permissive substrate properties of goldfish optic nerve myelin and myelin proteins. J. Neurosci. 15: 7500–7508.

    Google Scholar 

  • Watanabe E and Murakami F (1989): Preferential adhesion of chick central neurons to the gray matter of the central nervous system. Neurosci. Lett. 97: 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Webster DMS and Steeves JD (1988): Origins of brain stem-spinal projections in the duck and goose. J. Comp. Neurol. 273: 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Webster DMS and Steeves JD (1991): Funicular organization of avian brain stem-spinal projections. J. Comp. Neurol. 312: 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Wehrle-Haller B and Chiquet M (1993): Dual function of tenascin: simultaneous promotion of neurite outgrowth and inhibition of glial migration. J. Cell Sci. 106: 597–610.

    PubMed  CAS  Google Scholar 

  • Yakovleff A Cabelguen J-M Orsal D Gimenez y Robotta M Rajaofetra N Drian M-J Bussel B and Privat A (1995): Fictive activities in adult chronic spinal rats transplanted with embryonic brain stem neurons. Exp. Brain Res. 106: 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Yajima K and Suzuki K (1979): Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab. Invest. 41: 385–392.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dyer, J.K., McGraw, J., Bourque, J., Steeves, J.D. (1997). Overcoming Myelin-Associated Inhibition of Axonal Regeneration after CNS Injury. In: Juurlink, B.H.J., Devon, R.M., Doucette, J.R., Nazarali, A.J., Schreyer, D.J., Verge, V.M.K. (eds) Cell Biology and Pathology of Myelin. Altschul Symposia Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5949-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5949-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45595-7

  • Online ISBN: 978-1-4615-5949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics