Skip to main content

Axonal Regeneration in the Fish and Amphibian CNS

Myelin-Associated Neurite Growth Inhibitors and Adaptive Plasticity of Glial Cells

  • Chapter
Book cover Cell Biology and Pathology of Myelin

Part of the book series: Altschul Symposia Series ((ALSS,volume 4))

Abstract

For regeneration of severed nerve fibers to be successful, a number of basic requirements have to be met. First, the injured neuron must be able to reinitiate the cellular machinery required for axonal regrowth. Second, the environment of the nerve cells must be conducive to neurite growth, and allow axons to regenerate back to their targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandtlow C, Zachleder T, Schwab ME (1990): Oligodendrocytes arrest neurite growth by contact inhibition. J. Neurosci. 10: 3837–3848.

    PubMed  CAS  Google Scholar 

  • Bastmeyer M, Schlosshauer B, Stuermer CAO (1990): The spatiotemporal distribution of N-CAM in the retinotec-tal pathway of adult goldfish detected by the monoclonal antibody D3. Development 108: 299–311.

    PubMed  CAS  Google Scholar 

  • Bastmeyer M, Jeserich G, Stuermer CAO (1994): Similarities and differences between fish oligodendrocytes and Schwann cells in vitro. Glia 11: 300–314.

    Article  PubMed  CAS  Google Scholar 

  • Bastmeyer M, Bähr M, Stuermer CAO (1993): Fish optic nerve oligodendrocytes support axonal regeneration of fish and mammalian retinal ganglion cells. Glia 8: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Bastmeyer M, Beckmann M, Schwab ME, Stuermer CAO (1991): Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not by goldfish ON tract oligodendrocytelike cells and fish CNS myelin. J. Neurosci. 11: 626–640.

    PubMed  CAS  Google Scholar 

  • Beattie MS, Bresnahan JC, Lopate G (1990): Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs. J. Neurobiol 21: 1108–1122.

    Article  PubMed  CAS  Google Scholar 

  • Bixby MA, Pollock B (1983): Increased regeneration rate in peripheral axons following double lesions: enhancement of the conditioning lesion effect. J. Neurobiol. 14: 467–472.

    Article  Google Scholar 

  • Bohn RC, Reier PJ (1985): Retrograde degeneration of myelinated axons and reorganization in the optic nerves of adult frogs (Xenopus laevis) following nerve injury or tectal ablation. J. Neurocytol. 14: 221–244.

    Article  PubMed  CAS  Google Scholar 

  • Caroni P. Schwab ME (1988a): Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106:1281–1288.

    Article  CAS  Google Scholar 

  • Caroni P, Schwab ME (1988b): Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96.

    Article  CAS  Google Scholar 

  • Clarke JDW, Alexander R, Holder N (1988): Regeneration of descending’axons in the spinal cord of the axolotl. Neurosci. Lett. 89: 1–6.

    CAS  Google Scholar 

  • Fawcett JW, Rokos J, Bakst I (1989): Oligodendrocytes repel axons and cause axonal growth cone collapse. J. Cell Sci. 92: 93–100.

    PubMed  Google Scholar 

  • Forehand CJ, Farel PB (1982): Anatomical and behavioral recovery from the effects of spinal cord transection: dependence on metamorphosis in anuran larvae. J. Neurosci. 2: 654–662.

    PubMed  CAS  Google Scholar 

  • Gaze RM (1970): The formation of nerve connections. London: Academic Press.

    Google Scholar 

  • Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H (1987): Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. USA 84: 8735–8739.

    Article  PubMed  CAS  Google Scholar 

  • Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H (1987): Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. USA 84: 8735–8739.

    Article  PubMed  CAS  Google Scholar 

  • Lang DM, Rubin BP, Schwab ME, Stuermer CAO (1995): CNS Myelin and oligodendrocytes of the Xenopus spinal cord-but not optic nerve-are nonpermissive for axon growth. J.Neurosci. 15: 99–109.

    PubMed  CAS  Google Scholar 

  • McKerracher L. David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994): Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13: 805–811.

    Article  PubMed  CAS  Google Scholar 

  • Moorman SJ, Hume RI (1993): α-Conotoxin prevents myelin-evoked growth cone collapse in neonatal rat locus coeruleus neurons in vitro. J. Neurosci. 13:4727–4736.

    PubMed  CAS  Google Scholar 

  • Morgan L. Jessen KR, Mirsky R (1991): The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (O4+) to a myelin phenotype (P0+, GFAP-. N-CAM-, NGF-receptor) depends on growth inhibition. J. Cell Biol. 112: 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994): A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13: 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Piatt J. (1955): Regeneration of the spinal cord in the salamander. J. Exp. Zool. 129: 177–207.

    Article  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983): A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303: 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Reier PJ, Webster H deF (1974): Regeneration and remyelination of Xenopus tadpole optic nerve fibres following transection or crush. J. Neurocytol. 3: 591–618.

    Article  PubMed  CAS  Google Scholar 

  • Schnell L, Schwab ME (1990): Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Schwab ME, Caroni P. (1988): Oligodendrocytes and CNS myelin are non-permissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8: 2381–2393.

    PubMed  CAS  Google Scholar 

  • Schwab ME, Caroni P. (1988): Oligodendrocytes and CNS myelin are non-permissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8: 2381–2393.

    PubMed  CAS  Google Scholar 

  • Schwalb JM, Boulis NM, Gu M, Winickoff J, Jackson PS, Irwin N, Benowitz LI (1995): Two factors secreted by the goldfish optic nerve induce retinal ganglion cells to regenerate axons in culture. J.Neurosci. 15: 5514–5525.

    PubMed  CAS  Google Scholar 

  • Sharma SC, Jadhao AG, Prasada Rao PD (1993): Regeneration of supraspinal projection neurons in the adult goldfish. Brain Res. 620: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Sivron T, Schwartz M (1994): Nonpermissive nature of fish optic nerves to axonal growth is due to the presence of myelin-associated growth inhibitors. Exp. Neurol. 130: 411–413.

    Article  PubMed  CAS  Google Scholar 

  • Sommer I, Schachner M (1981): Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83: 311–327.

    Article  PubMed  CAS  Google Scholar 

  • Stensaas LJ, Feringa ER (1977): Axon regeneration across the site of injury in the optic nerve of the newt Triturus pyrrhogaster. Cell Tissue Res. 179: 501–516.

    Article  PubMed  CAS  Google Scholar 

  • Taylor J, Pesheva P, Schachner M (1993): Influence of janusin and tenascin on growth cone behavior in vitro. J. Neurosci. Res. 35: 347–362.

    Article  PubMed  CAS  Google Scholar 

  • Turner JE, Singer ME (1974): The ultrastructure of regeneration in the severed newt optic nerve. J.Exp. Zool. 190: 249–268.

    Article  PubMed  CAS  Google Scholar 

  • Vanselow J, Schwab ME, Thanos S (1990): Responses of regenerating rat retinal ganglion cell axons to contacts with central nervous myelin in vitro. Eur. J. Neurosci. 2: 121–125.

    Article  PubMed  Google Scholar 

  • Wanner M, Lang DM, Bandtlow CE, Schwab ME, Bastmeyer M, Stuermer CAO (1995): Reevaluation of the growth permissive substrate properties of goldfish optic nerve myelin. J. Neurosci. 15: 7500–7508.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lang, D.M., Ankerhold, R., Stuermer, C.A.O. (1997). Axonal Regeneration in the Fish and Amphibian CNS. In: Juurlink, B.H.J., Devon, R.M., Doucette, J.R., Nazarali, A.J., Schreyer, D.J., Verge, V.M.K. (eds) Cell Biology and Pathology of Myelin. Altschul Symposia Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5949-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5949-8_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45595-7

  • Online ISBN: 978-1-4615-5949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics