Skip to main content

A Procedure for Isolating Schwann Cells Developed for Analysis of the Mouse Embryonic Lethal Mutation NF1

  • Chapter
Cell Biology and Pathology of Myelin

Part of the book series: Altschul Symposia Series ((ALSS,volume 4))

Abstract

The study of Schwann cell proliferation and differentiation has been facilitated by the availability of cultured Schwann cells that faithfully mimic Schwann cell in vivo maturation, growth, and differentiation. Transgenic mouse models and naturally occurring mouse mutants serve as increasingly important tools for the study of Schwann cell biology. We have developed methods to purify Schwann cells from single embryonic day 12.5 (E12.5) mutant mouse embryos in order to define abnormalities caused by mutations at the type 1 neurofibromatosis (NF1) locus. This method can be used to study Schwann cells from any mutant mouse that survives until day 12 of embryonic life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo AJ, Charron L, Bray GM (1976): Potential of Schwann cells from unmyelinated nerves to produce myelin: A quantitative ultrastructural and autoradiographic study. J. Neurocytol. 5: 565–573.

    Article  PubMed  CAS  Google Scholar 

  • Askanas V, Engel WK, Dalakas MC, Lawrence JV, Carter LS (1980): Human Schwann cells in tissue culture: histochemical and ultrastructural studies. Archives of Neurology 37: 329–37.

    Article  PubMed  CAS  Google Scholar 

  • Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J (1992): Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients [see comments]. Nature 356: 713–5.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya A, Brackenbury R, Ratner N (1993): Neuron-Schwann cell signals are conserved across species: purification and characterization of embryonic chicken Schwann cells. Journal of Neuroscience Research 35: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LE Copeland NG (1994): Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues [published erratum appears in Genes Dev 1994 Nov 15;8(22):2792]. Genes & Development 8: 1019–29.

    Article  CAS  Google Scholar 

  • Brockes JP, Fields KL, Raff MC (1979): Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Research 165: 105–18.

    Article  PubMed  CAS  Google Scholar 

  • Cochran M, Black MM (1985): PC12 neurite regeneration and long-term maintenance in the absence of exoge-nous nerve growth factor in response to contact with Schwann cells. Brain Research 349: 105–16.

    PubMed  CAS  Google Scholar 

  • Cornbrooks CJ, Mithen F, Cochran JM, Bunge RP (1982): Factors affecting Schwann cell basal lamina formation in cultures of dorsal root ganglia from mice with muscular dystrophy. Brain Research 282: 57–67.

    PubMed  CAS  Google Scholar 

  • Davis JB, Stroobant P (1990): Platelet-derived growth factors and fibroblast growth factors arc mitogenic for rat Schwann cells. J. Cell Biol. 110: 1353–1360.

    Article  PubMed  CAS  Google Scholar 

  • DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR (1992): Abnormal regulation of mammalian p21 ras contributes to malignant tumor growth in von Recklinghausen (type I) neurofibromatosis. Cell 69: 265–73.

    Article  PubMed  CAS  Google Scholar 

  • Duncan D (1934): A relation between axon diameter and myelination determined by measurement of myelinated spinal root fibers. J. Comp. Neurol. 60: 437.

    Article  Google Scholar 

  • Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987): Differentiation of axon -related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105: 1023–34.

    Article  PubMed  CAS  Google Scholar 

  • Friede RL (1972): Control of myelin formation by axon caliber (with a model of the control mechanism). J. Comp. Neurol. 144: 233–252.

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA (1994): Tumour predisposition in mice heterozygous for a targeted mutation in Nfl. Nature Genetics 7: 353–61.

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (1991): Schwann cell precursors and their development. Glia 4: 9–18.

    Article  Google Scholar 

  • Kalderon N (1984): Schwann cell proliferation and localized proteolysis: expression of plasminogen-activatoractivity predominates in the proliferating cell populations. Proceedings of the National Academy of Sciences of the United States of America 81: 7216–20.

    Article  PubMed  CAS  Google Scholar 

  • Kim HA, Ling B, Ratner N (1997): NF1-deficient mouse Schwann cells are angiogenic, invasive and can be induced to hyperproliferate: Reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol. Cell Biol. 17: 862–872.

    CAS  Google Scholar 

  • Kim HA, Rosenbaum T, Marchionni MA, Ratner N, DeClue JE (1995): Schwann cells from neurofibromin deficient mice exhibit activation of p2lras, inhibition of cell proliferation and morphological changes. Oncogene 11: 325–35.

    PubMed  CAS  Google Scholar 

  • Kim SU, Yong VW, Watabe K, Shin DH (1989): Human fetal Schwann cells in culture: phenotypic expressions and proliferative capability. Journal of Neuroscience Research 22: 50–9.

    Article  PubMed  Google Scholar 

  • Komiyama A, Suzuki K (1991): Age-related changes in attachment and proliferation of mouse Schwann cells in vitro. Dev. Brain Res. 62: 7–16.

    Article  CAS  Google Scholar 

  • Krikorian D, Manthorpe M, Varon S (1982): Purified mouse Schwann cells: mitogenic effects of fetal calf serum and fibroblast growth factor. Developmental Neuroscience 5: 77–91.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlengel KR, Bunge MB, Bunge RP (1990): Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. 1. Methods for preparing implants from dissociated cells. Journal of Comparative Neurology 293: 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Lemke G, Chao M (1988): Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development 102: 499–504.

    PubMed  CAS  Google Scholar 

  • Lemke GE, Brockes JP (1984): Identification and purification of glial growth factor. The Journal of Neuroscience 4: 75–83.

    PubMed  CAS  Google Scholar 

  • Levi AD, Bunge RP, Lofgren JA, Meima L, Hefti F, Nikolics K, Sliwkowski MX (1995): The influence of heregulins on human Schwann cell proliferation. Journal of Neuroscience 15: 1329–40.

    PubMed  CAS  Google Scholar 

  • Manthorpe M, Skaper S, Varon S (1980): Purification of mouse Schwann cells using neurite-induced proliferation in serum-free monolayer culture. Brain Research 196: 467–82.

    Article  PubMed  CAS  Google Scholar 

  • Marchionni MA, Goodearl ADJ, Chen MS, Bermingham-McDonogh O, Kirk C, Hendricks M, Danehy F, Misumi D, Sudhalter J, Kobayashi K, Wroblewski D, Lynch C, Baldassare M, Hiles I, Davis JB, Hsuan JJ, Totty NF, Otsu M, McBurney RN, Waterfield MD, Stroobant P, Gwynne D (1993): Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Matthews MA (1968): An electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system. Anat. Rec. 161: 337.

    CAS  Google Scholar 

  • McCarthy KD, Partlow LM (1976): Neuronal stimulation of [3H]thymidine incorporation by primary cultures of highly purifed non-neuronal cells. Brain Res 114: 415–426.

    Article  PubMed  CAS  Google Scholar 

  • Morgan L, Jessen RK, Mirsky R (1991): The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04’) to a myelin phenotype (PO., GFAP-, NGF-receptor’) depends on growth inhibition. J. Cell Biol. 112: 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey TK, Kleitman N, Bunge RP (1991): Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. Journal of Neuroscience 11: 2433–42.

    PubMed  CAS  Google Scholar 

  • Raff MC, Abney E, Brocker JP, Hornby-Smith A (1978): Schwann cell growth factors. Cell 15: 813–822.

    Article  PubMed  CAS  Google Scholar 

  • Riccardi VM (1991): Neurofibromatosis: past, present, and future [editorial; comment]. New England Journal of Medicine 324: 1283–5.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum T, Boissy YL, Kombrinck K, Brannan C, Jenkins NA, Copeland NG, Ratner N (1995): Neurofibromin deficient fibroblasts fail to form perineurium in vitro. Development 121: 3583–3592.

    PubMed  CAS  Google Scholar 

  • Rosenbaum T, Kim HA, Ling B, Ratner N (1997): Neurofibromin is required for appropriate Po expression and myelination. submitted.

    Google Scholar 

  • Rutkowski JL, Kirk CJ, Lerner MA, Tennekoon GI (1995): Purification and expansion of human Schwann cells in vitro. Nature Medicine 1: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski JL, Tennekoon GI, McGillicuddy JE (1992): Selective culture of mitotically active human Schwann cells from adult sural nerves. Annals of Neurology 31: 580–6.

    Article  PubMed  CAS  Google Scholar 

  • Salzer JL, Bunge RP, Glaser L (1980): Studies of Schwann cell proliferation. Ill. Evidence for the surface localization of the neurite mitogen. Journal of Cell Biology 84: 767–78.

    Article  PubMed  CAS  Google Scholar 

  • Schachner M, Kim SK, Zehnle R (1981): Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies. Dev Biol 83: 328–338.

    Article  PubMed  CAS  Google Scholar 

  • Seilheimer B, Schachner M (1987): Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor. EMBO 6: 1611–1616.

    CAS  Google Scholar 

  • Shine HD, Sidman RL (1984): Immunoreactive myelin basic proteins are not detected when shiverer mutant Schwann cells and fibroblasts are co-cultured with normal neurons. Journal of Cell Biology 98: 1291–5.

    Article  PubMed  CAS  Google Scholar 

  • Sobue G, Pleasure D (1984): Schwann cell galactocerebroside induced by derivatives of adenosine 3’ 5’ mono-phosphate. Science 224: 72–74.

    Article  PubMed  CAS  Google Scholar 

  • Stefansson K, Wollmann R, Jerkovic M (1982): S-100 protein in soft tissue tumours derived from Schwann cells and melanocytes. Am. J. Pathol. 106: 261–8.

    PubMed  CAS  Google Scholar 

  • Stewart JS, Eccleston PA, R. JK, Mirsky R (1991): Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth. J. Neurosci. Res 30: 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Voyvodic JT (1989): Target size regulates calibre and myelination of sympathetic axons. Nature 342: 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Wood PM (1976): Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Research 115: 361–75.

    Article  PubMed  CAS  Google Scholar 

  • Wood PM, Bunge RP (1975): Evidence that sensory axons are mitogenic for Schwann cells. Nature 256: 662–664.

    Article  PubMed  CAS  Google Scholar 

  • Yong VW, Kim SU, Kim MW, Shin DH (1988): Growth factors for human glial cells in culture. Glia 1: 113–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, H.A., Ratner, N. (1997). A Procedure for Isolating Schwann Cells Developed for Analysis of the Mouse Embryonic Lethal Mutation NF1 . In: Juurlink, B.H.J., Devon, R.M., Doucette, J.R., Nazarali, A.J., Schreyer, D.J., Verge, V.M.K. (eds) Cell Biology and Pathology of Myelin. Altschul Symposia Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5949-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5949-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45595-7

  • Online ISBN: 978-1-4615-5949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics