Skip to main content

Role of cAMP during the Process of Demyelination and Remyelination in Peripheral Nerve

  • Chapter
Cell Biology and Pathology of Myelin

Part of the book series: Altschul Symposia Series ((ALSS,volume 4))

  • 122 Accesses

Abstract

Myelin is a multilamellar structure that surrounds axons to increase axonal conduction velocity and provide trophic support. In the peripheral nervous system, it is formed by the spiral wrapping of the cell membrane of myelinating Schwann cells (SCs) around axons. The SC phenotype is dependent on its association with an axon. Axonal contact Induces the expression of myelin-specific proteins, including P0, myelin basic protein, peripheral myelin protein-22, and myelin associated glycoprotein (Wood and Engel, 1976; Uyemura et al., 1979; Carson et al., 1983; Poduslo, 1984; Gupta et al., 1988; Lemke and Chao, 1988; LeBlanc and Poduslo, 1990). With the onset of myelination, the amount of these myelin proteins and the steady state levels of their mRNAs increases dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bradley WG, Asbury AK (1970) Duration of synthesis phase in neurilemma cells in mouse sciatic nerve during degeneration. Exp Neurol 26: 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP, Raff MC, Nishiguchi DJ, Winter J (1980) Studies on cultured rat Schwann cells. Ill. Assays for peripheral myelin proteins. J Neurocytol 9: 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Brown MJ, Asbury AK (1981) Schwann cell proliferation in the postnatal mouse: timing and topography. Exp Neurol 74: 170–186.

    Article  PubMed  CAS  Google Scholar 

  • Carson JH, Nielson ML, Barbarese E (1983) Developmental regulation of myelin basic protein expression in mouse brain. Dev Biol 96: 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Eccleston PA (1992) Regulation of Schwann Cell Proliferation: Mechanisms Involved in Peripheral Nerve Development. Exp Cell Res 199: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom PAR (1995) Increased cyclic AMP in in vitro regenerating frog sciatic nerves inhibits Schwann cell proliferation but has no effect on axonal outgrowth. J Neurosci Res 42: 54–62.

    Article  PubMed  CAS  Google Scholar 

  • Genain CP. Roberts T, Davis RL, Nguyen MH, Uccelli A, Faulds D, Li Y, Hedgpeth J, Hauser SL (1995) Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor. Proc Natl Acad Sci USA 92:3601–3605.

    Article  PubMed  CAS  Google Scholar 

  • Gow A, Friedrich VL, Lazzarini RA (1992) Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. J Cell Biol 119: 605–616.

    Article  PubMed  CAS  Google Scholar 

  • Graves LM, Bornfeldt KE, Raines EW, Potts BC, Macdonald SG, Ross R, Krebs EG (1993) Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci USA 90:10300–10304.

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Poduslo JF, Mezei C (1988) Temporal changes in Po and MBP gene expression after crush-injury of the adult peripheral nerve. Molec Brain Res 4: 133–141.

    Article  CAS  Google Scholar 

  • Gupta SK, Poduslo JF, Dunn R, Roder J, Mezei C (1990) Myelin-associated glycoprotein gene expression in the presence and absence of Schwann cell-axonal contact. Dev Neurosci 12: 22–33.

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R, Morgan L (1990) Role of cyclic AMP and proliferation controls in Schwann cell differentiation. Ann N Y Acad Sci 633: 78–89.

    Article  Google Scholar 

  • LeBlanc AC, Poduslo JF, Mezei C (1987) Gene expression in the presence or absence of myelin assembly. Molec Brain Res 2: 57–67.

    Article  CAS  Google Scholar 

  • LeBlanc AC, Windebank AJ, Poduslo JF (1992) Po gene expression in Schwann cells is modulated by an increase of CAMP which is dependent on the presence of axons. Mol Brain Res 12: 31–38.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc AC, Poduslo JF (1990) Regulation of apolipoprotein E gene expression after injury of the rat sciatic nerve. J Neurosci Res 25: 162–171.

    CAS  Google Scholar 

  • Lemke G, Lamar E, Patterson J (1988) Isolation and analysis of the gene encoding peripheral myelin protein zero. Neuron 1: 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Lemke G (1990) Glial growth factors. Sem Neurosci 2: 437–443.

    Google Scholar 

  • Lemke G, Chao M (1988) Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development 102: 499–504.

    PubMed  CAS  Google Scholar 

  • Macklin WB, Campagnoni CW, Deininger PL, Gardinier MV (1987) Structure and expression of the mouse myelin proteolipid protein gene. J Neurosci Res 18: 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Morgan L, Jessen KR, Mirsky R (1991) The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04*) to a myelin phenotype (Po`, GFAP-, N-CAM-, NGF-receptor) depends on growth inhibition. J Cell Biol 112: 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Oaklander AL, Miller MS, Spencer PS (1987) Rapid anterograde spread of premitotic activity along degenerating cat sciatic nerve. Journal of Neurochemistry 48: 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Poduslo JF (1984) Regulation of myelination: biosynthesis of the major myelin glycoprotein by Schwann cells in the presence and absence of myelin assembly. J Neurochem 42: 493–503.

    Article  PubMed  CAS  Google Scholar 

  • Poduslo JF (1985) Post-translational protein modification: biosynthetic control mechanisms in the glycosylation of the major myelin glycoprotein by Schwann cells. J Neurochem 44: 1194–1206.

    Article  PubMed  CAS  Google Scholar 

  • Poduslo JF, Dyck PJ, Berg CT (1985) Regulation of myelination: Schwann cell transition from a myelin maintaining state to a quiescent state after permanent nerve transection. J Neurochem 44: 388–400.

    Article  PubMed  CAS  Google Scholar 

  • Poduslo JF, Walikonis RS, Domec M, Berg CT, Holtz-Heppelmann CJ (1995) The second messenger, cAMP, is not sufficient for myelin gene induction in the peripheral nervous system. J Neurochem 65: 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Rickles RJ, Darrow AL, Strickland S (1989) Differentiation-responsive elements in the 5’ region of the mouse tissue plasminogen activator gene confer two-stage regulation by retinoic acid and cyclic AMP in teratocarcinoma cells. Mol Cell Biol 9: 1691–1704.

    PubMed  CAS  Google Scholar 

  • Roesler WJ, Vandenbark GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263: 9063–9066.

    PubMed  CAS  Google Scholar 

  • Sasaki K, Cripe TP, Koch SR, Andreone TL, Petersen DD, Beale EG, Granner DK (1984) Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 259: 15242–15251.

    PubMed  CAS  Google Scholar 

  • Seamon KB, Daly JW (1986) Forskolin: its biological and chemical properties. In: Advances in cyclic nucleotide and protein phosphorylation research ( Greengard P, Robinson GA eds), pp 1–150. New York: Raven Press.

    Google Scholar 

  • Sevetson BR, Kong X, Lawrence JC, Jr. (1993) Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 90: 10305–10309.

    Article  PubMed  CAS  Google Scholar 

  • Sobue G, Shuman S, Pleasure D (1986) Schwann cell responses to cyclic AMP: proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res 362: 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Sobue G, Pleasure D (1984) Schwann cell galactocerebroside induced by derivatives of adenosine 3’,5’-monophosphate. Science 224: 72–74.

    Article  PubMed  CAS  Google Scholar 

  • Sommer N, Loschmann PA, Northoff GH, Weller M, Steinbrecher A, Steinbach JP, Lichtenfels R, Meyermann R, Riethmuller A, Fontana A, Dichgans J, Martin R (1995) The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nature Med 1: 244–248.

    Article  PubMed  CAS  Google Scholar 

  • Spencer PS, Weinberg HJ, Krygier-Brevart V, Zabrenetzky V (1979) An in vivo method to prepare normal Schwann cells free of axons and myelin. Brain Res 165: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Suter U, Snipes GJ, Schoenerscott R, Welcher AA, Pareek S, Lupski JR, Murphy RA, Shooter EM, Patel PI (1994) Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters. J Biol Chem 269: 25795–25808.

    PubMed  CAS  Google Scholar 

  • Trapp BD, Hauer P, Lemke G (1988) Axonal regulation of myelin protein mRNA levels in actively myelinating Schwann cells. J Neurosci 8: 3515–3521.

    PubMed  CAS  Google Scholar 

  • Uyemura K, Horie K, Kitamura K, Suzuki M, Uehara S (1979) Developmental changes of myelin proteins in the chick peripheral nerve. J Neurochem 32: 779–788.

    Article  PubMed  CAS  Google Scholar 

  • Walikonis RS, Poduslo JF (1996) Activity of cyclic AMP phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries. Submitted

    Google Scholar 

  • Wood JG, Engel EL (1976) Peripheral nerve glycoproteins and myelin fine structure during development of rat sciatic nerve. J Neurocytol 5: 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto KK, Gonzalez GA, Menzel P, Rivier J, Montminy MR (1990) Characterization of a bipartite activator domain in transcription factor CREB. Cell 60: 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XP, Miskimins R (1993) Binding at an NFI site is modulated by cyclic AMP-dependent activation of myelin basic protein gene expression. J Neurochem 60: 2010–2017.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walikonis, R.S., Poduslo, J.F. (1997). Role of cAMP during the Process of Demyelination and Remyelination in Peripheral Nerve. In: Juurlink, B.H.J., Devon, R.M., Doucette, J.R., Nazarali, A.J., Schreyer, D.J., Verge, V.M.K. (eds) Cell Biology and Pathology of Myelin. Altschul Symposia Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5949-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5949-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45595-7

  • Online ISBN: 978-1-4615-5949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics