Skip to main content

An Ammonia Hypothesis of Alzheimer Disease

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 420))

Abstract

There is little doubt that dementia of the Alzheimer type (DAT) is a multifactorial disease. The existence of a major gene for DAT is equivocal, however, a genetic predisposition is considered to be likely from the high concordance of DAT in monozygotic and dizygotic twins (1), and an increased frequency of the disease in relatives of affected patients (2). The long arm of chromosome 21 is the locus of predisposition (3). The expression of a number of genes encoding for various neuronal and non-neuronal proteins is also changed in DAT brains (4).

“All this has been said before, but since nobody listened, it must be said again.”

André Gide

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jarvik, L F, Ruth, V. and Matsuyama, S.S. 1980, Organic brain syndrome and aging. A 6 year follow-up of surviving twins. Arch. Gen. Psychiatry 37: 280–286.

    Article  PubMed  CAS  Google Scholar 

  2. Heston, L.L. and White, J. 1980, A family study of Alzheimer disease and senile dementia; an interim report. In Psychopathology in the Aged (Cole, J.O and Barrett, J.E. Eds.) Raven Press, New York, pp 63–72

    Google Scholar 

  3. St. George-Hyslop, P.H., Tanzi, R.E., Polinski, R.J., Haines, J.L., Nee, L., Watkins, P.C., Myers, R.H., Feldman, R.G., Pollen, D., Drachman, D., Growdon, J., Bruni, A., Foncin, J.F., Salmon, D., Frommet, P., Amaducci, L., Sorbi, S., Piacentini, S., Stewart, G.D., Hobbs, W.J., Coneally, P.M. and Gusella, J.F. 1987, The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235: 885–890.

    Article  Google Scholar 

  4. Boyes, B.E., Walker, D.G., McGeer, P.L., and McGeer, E.G. 1992, Identification and characterization of a large human brain gene whose expression is increased in Alzheimer disease. Mol. Brain Res. 12: 47–57.

    Article  PubMed  CAS  Google Scholar 

  5. Selkoe, D.J. 1991, The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498.

    Article  PubMed  CAS  Google Scholar 

  6. Delaere, P., Duyckaerts, C., Brion, J.T., Poulain, V. and Hauw, J.J. 1989, Tau, paired helical filaments and amyloid in the neocortex: A morphometric study of 15 cases with graded intellectual status in aging and senile dementia of Alzheimer type. Acta Neuropathol. 77: 645–653.

    Article  PubMed  CAS  Google Scholar 

  7. Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., De Theresa, R., Hill, R., Hausen, L.A. and Katzman, R. 1991, Physical basis of cognitive alterations in Alzheimer’s disease: synaptic loss is the major correlate of cognitive impairment. Ann. Neurol. 30: 572–580.

    Article  PubMed  CAS  Google Scholar 

  8. Lassmann, H., Fischer, P. and Jellinger, K. 1993, Synaptic pathology of Alzheimer’s disease. In Amyloid Precursor Proteins, Signal Transduction and Neural Transplantation. Proc. 7th Meeting of the Intern. Study Group on the Pharmacology of Memory Disorders Associated with Aging, pp 41–47.

    Google Scholar 

  9. Henderson, A.S. 1988, The risk factors of Alzheimer’s disease: a review and an hypothesis. Acta Psychiatr. Scand. 78: 257–275.

    CAS  Google Scholar 

  10. Alafiizoff, I., Adolfsson, R., Grundke-Iqbal, I. and Winblad, B. 1987, Blood-brain barrier in Alzheimer’s dementia and in non-demented elderly. An immunocytochemical study. Acta Neuropathol. 73: 160–166.

    Article  Google Scholar 

  11. Miklossy, J. 1993, Alzheimer’s disease, a spirochetosis? Neuro Report 4: 841–848.

    CAS  Google Scholar 

  12. Harman, D. 1984, Free radical theory of aging: The “free radical” diseases. Age 7: 111–131.

    Article  CAS  Google Scholar 

  13. Jeandel, C., Nicolas, M.B., Dubois, F., Nabet-Belleville, F., Penin, F. and Cuny, G. 1989, Lipid peroxidation and free-radical scavengers in Alzheimer’s disease. Gerontology 35: 275–282.

    Article  PubMed  CAS  Google Scholar 

  14. Volicer, L. and Crino, P.B. 1990, Involvement of free radicals in dementia of the Alzheimer type: an hypothesis. Neurobiol. Aging 11: 567–571.

    Article  PubMed  CAS  Google Scholar 

  15. Crowther, R.A. 1993, Tau protein and paired helical filaments of Alzheimer’s disease. Current Opinion Struct. Biol. 3: 202–206.

    Article  CAS  Google Scholar 

  16. Fowler, C.J., Cowburn, R.F. and O’Neill, C. 1992, Brain signal transduction distrubances in neurodegenerative disorders. Cell. Signal. 4: 1–9.

    Article  PubMed  CAS  Google Scholar 

  17. Christensen, H., Maltby, N., Jorm, A.F., Creasey, H. and Broe, G.A. 1992, Cholinergic “blockade” as a model of the cognitive deficits in Alzheimer’s disease. Brain 115: 1681–1699.

    Article  PubMed  Google Scholar 

  18. Davies, P. and Maloney, A.J.R. 1976, Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii 1403.

    Article  Google Scholar 

  19. Benton, J.S., Bowen, D.M., Allen, S.J., Haan, E A, Davison, A.N., Neary, D., Murphy, R.P. and Snowden, J.S. 1982, Alzheimer’s disease as a disorder of isodendritic care. Lancet ii 456.

    Article  Google Scholar 

  20. McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E. and Nagai, T. 1984, Aging, Alzheimer disease and the cholinergic system of the basal forebrain. Neurology 34: 741–745.

    Article  PubMed  CAS  Google Scholar 

  21. Palmer, A.M. and Dekosky, S.T. 1993, Monoamine neurons in aging and Alzheimer disease. J. Neural Transm. 91: 135–139.

    Article  CAS  Google Scholar 

  22. Giacobini, E. 1991, Nicotinic cholinergic receptors in human brain: effects of aging and Alzheimer. Adv. Exp. Med. Biol. 296: 303–315.

    Article  PubMed  CAS  Google Scholar 

  23. De Keyser, J. 1992, Loss of high-affinity agonist receptor binding in Alzheimer’s disease. Ann. Neurol. 31: 231–232.

    Article  PubMed  Google Scholar 

  24. Greenamyre, J.T. and Maragos, W.G. 1993, Neurotransmitter receptors in Alzheimer disease. Cerebrovasc. Brain Metab. Rev. 5: 61–94.

    PubMed  CAS  Google Scholar 

  25. Blin, J., Baron, J.C., Dubois, B., Crouzel, C., Fiorelli, M., Attar-Levy, D., Pillon, B., Fournier, D., Vidailhet, M. and Agid, Y. 1993, Loss of brain 5HT-2 receptors in Alzheimer’s disease. Brain 11: 497–510.

    Article  Google Scholar 

  26. Joyce, J.N., Kaeger, C., Ryoo, H. and Goldsmith, S. 1993, Dopamine D2 receptors in the hippocampus and amygdala in Alzheimer’s disease. Neurosci. Lett. 154: 171–174.

    Article  PubMed  CAS  Google Scholar 

  27. Frederickson, R. C. A. 1992, Astroglia in Alzheimer’s disease Neurobiol. Aging 13: 239–253.

    CAS  Google Scholar 

  28. McGeer, P.L., Kawamata, T., Walker, D.G., Akiyama, H., Tooyama, I. and McGeer, E.G. 1993, Microglia in degenerative and neurological disease. Canad. Sci. Neurol. 16: 511–515.

    Google Scholar 

  29. Hefti, F. and Schneider, L.S. 1991, Nerve growth factor in Alzheimer’s disease. Clin. Neuropharmacol. 14, Suppl. 1, S62–S76.

    Article  PubMed  Google Scholar 

  30. Vandenbeele, P. and Fiers, W. 1991, Is amyloidogenesis during Alzheimer’s disease due to IL-1/11–6 - mediated acute phase response in the brain? Immunol. Today 12: 217–219.

    Article  Google Scholar 

  31. Markesbury, W.R., Ehmann, W.D., Hossain, T.I.M., Alauddin, M. and Goodin, D.T. 1981, Instrumental neutron activation analysis of brain aluminum in Alzheimer disease and aging. Ann. Neurol. 10: 511–516.

    Article  Google Scholar 

  32. Thompson, C.M., Markesbery, W.R., Ehmann, W.D., Mao, Y.X. and Vance, D.E. 1988, Regional brain trace element studies in Alzheimer’s disease. Neurotoxicology 9: 1–8.

    PubMed  CAS  Google Scholar 

  33. Deloncle, R. and Guillard, O. 1990, Mechanism of Alzheimer’s disease: Arguments for a neurotransmitter-aluminium complex implication. Neurochem. Res. 15: 1239–1245.

    CAS  Google Scholar 

  34. Good, P.F., Perl, D.P., Bierer, L.M. and Schmeidler, J. 1992, Selective accumulation ofaluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann. Neurol. 31: 286–292.

    Article  PubMed  CAS  Google Scholar 

  35. Evans, P.H., Klinowski, J., Yano, E. and Urano, N. 1989, Alzheimer’s disease: a pathogenetic role for aluminium silicate-induced phagocytic free radicals. Free Rad. Res. Commun. 6: 317–321.

    Article  CAS  Google Scholar 

  36. Maragos, W.F., Greenamyre, T., Penney, Jr. J.B. and Young, A.B. 1987, Glutamate dysfunction in Alzheimer’s disease, an hypothesis. TINS 10: 65–68.

    CAS  Google Scholar 

  37. Lawlor, B.A. and Davis, K.L. 1992, Does modulation of glutamatergic function represent a viable therapeutic strategy in Alzheimer’s disease? Biol. Psychiatry 31: 337–350.

    Article  PubMed  CAS  Google Scholar 

  38. Hardy, J. and Allsop, D. 1991, Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. TIPS 12: 383–388.

    PubMed  CAS  Google Scholar 

  39. Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G. and Cotman, C.W. 1993, Neurodegeneration induced by /3-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13: 1676–1687.

    PubMed  CAS  Google Scholar 

  40. Gorenstein, C. 1987, A hypothesis concerning the role of endogenous colchicin-like factors in the etiology of Alzheimer’s disease. Med. Hypotheses 23: 371–374.

    Article  PubMed  CAS  Google Scholar 

  41. Seiler, N. 1993, Is ammonia a pathogenetic factor in Alzheimer’s disease? Neurochem. Res. 18: 235–245.

    Article  PubMed  CAS  Google Scholar 

  42. Prusiner, S.D. 1984, Some speculations about prions, amyloid and Alzheimer’s disease. N. Engl. J. Med. 310: 661–663.

    Article  PubMed  CAS  Google Scholar 

  43. Cooper, A.J.L. and Plum, F. (1987) Biochemistry and physiology of brain ammonia. Physiol. Rev. 67: 440–519.

    PubMed  CAS  Google Scholar 

  44. Fisman, M., Ball, M. and Blume, W. 1989, Hyperammonemia and Alzheimer’s disease. J. Am. Ger. Soc. 37: 1102.

    CAS  Google Scholar 

  45. Fisman, M., Gordon, B., Felcki, V., Helmes, E., Appell, J. and Rabhern, K. 1985, Hyperammonemia in Alzheimer’s disease. Am. J. Psychiatry 142: 71–73.

    PubMed  CAS  Google Scholar 

  46. Branconnier, R.J., Dessain, E.C., McNiff, M.E. and Cole, J.O. 1986, Blood ammonia and Alzheimer disease. Am. J. Psychiatry 143: 1313.

    PubMed  CAS  Google Scholar 

  47. Hoyer, S., Nitsch, R. and Oesterreich, K. 1990, Ammonia is endogenously generated in the brain in the presence of presumed and verified dementia of Alzheimer type. Neurosci. Lett. 117: 358–368.

    Article  PubMed  CAS  Google Scholar 

  48. Butterworth, R.F., Giguere, J.F., Michaud, J., Lavoie, J. and Pomier-Layrargues, G. 1987, Ammonia: Key factor in the pathogenesis of hepatic encephalopathy. Neurochem. Pathol. 6: 1–12.

    Article  PubMed  CAS  Google Scholar 

  49. Zieve, L. 1987, Pathogenesis of hepatic encephalopathy. Metabolic Brain Dis. 2: 147–165.

    Article  CAS  Google Scholar 

  50. Weil-Malherbe, H. and Drysdale, A.C. 1957, Ammonia formation in brain. III. Role of protein amide groups and of hexosamines. J. Neurochem. 1: 250–257.

    Article  PubMed  CAS  Google Scholar 

  51. Kvamme, E. 1983, Ammonia metabolism in the CNS. Progr. Neurobiol. 20: 109–132.

    Article  CAS  Google Scholar 

  52. Faff-Michalak, L. and Albrecht, J. 1993, Hyperammonemia and hepatic encephalopathy stimulate rat cerebral synaptic mitochondrial glutamate dehydrogenase activity specifically in the direction of glutamate oxidation. Brain Res. 618: 299–302.

    Article  PubMed  CAS  Google Scholar 

  53. Smith, C.D., Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Stadtman, E.R., Floyd, R.A. and Markesbery, W.R. 1991, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl. Acad. Sci. USA 88: 10540–10543.

    Article  PubMed  CAS  Google Scholar 

  54. Le Prince, G., Delaere, P., Fages, C., Lefrancois, T., Touret, M. and Tardy, M. 1995, Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer Type. Neurochem. Res. 20: 859–862.

    Article  PubMed  Google Scholar 

  55. Procter, A.W., Palmer, A.M., Francis, T.D., Low, S.L., Neary, D., Murphey, E., Doshi, R. and Bowen,D.M. 1988, Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J. Neurochem. 50: 790–802.

    Article  PubMed  CAS  Google Scholar 

  56. Wallace, D R. and Dawson, Jr. R. 1992, Ammonia regulation of phosphate-activated glutaminase displays regional variation and impairment in the brain of aged rats. Neurochem. Res. 17: 1113–1122

    Article  PubMed  CAS  Google Scholar 

  57. Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Landeem, R.W., Cheng, M.S., Wu, J.F. and Floyd, R.A. 1991, Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert.butyl-a-phenylnitrone. Proc. Natl. Acad. Sci. USA 88: 3633–3636.

    Article  PubMed  CAS  Google Scholar 

  58. Oliver, C.N., Starke-Reed, P.E., Stadtman, E.R., Liu, G.J., Carney, J.M. and Floyd, R.A. 1990, Oxidative damage to brain proteins, loss of gutamine synthetase activity and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87: 5144–5147.

    Article  PubMed  CAS  Google Scholar 

  59. Adolfsson, R., Gottfries, C.G., Oreland, L. and Winblad, B. 1980, Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci. 27: 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  60. Rainikainen, K.J., Paljärvi, L., Halonen, T., Malminen, O., Kosma, V.M., Laakso, M. and Riekkinen, P.J. 1988, Dopaminergic system and monoamine oxidase B activity in Alzheimer’s disease. Neurobiol. Aging 9: 245–252.

    Google Scholar 

  61. Nakamura, S., Kawamata, T., Akiguchi, I., Kamayama, M., Nakamura, N. and Kimura, H. 1990, Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol. 80: 419–425.

    Article  PubMed  CAS  Google Scholar 

  62. Mangoni, A., Grassi, M.P., Frattola, L., Piolti, R., Bassi, S., Motta, A., Marcone, A. and Smirne, C. 1991, Effect of an MAO B inhibitor in the treatment of Alzheimer disease. Eur. Neurol. 31: 100–107.

    Article  PubMed  CAS  Google Scholar 

  63. Li, X.M., Juorio, A.V. and Boulton, A.A. 1995, Some new mechanisms underlying the actions of (-)deprenyl: possible relevance to neurodegeneration. Progr. Brain Res. 106: 99–112.

    Article  CAS  Google Scholar 

  64. Raabe, W.A. and Onstad, G.A. 1982, Ammonia and methionine sulfoximine intoxication. Brain Res. 242: 291–298.

    Article  PubMed  CAS  Google Scholar 

  65. Yamamoto, T., Iwasaki, K., Sato, Y., Yamamoto, H. and Konno, H. 1989, Astrocytic pathology of methionine sulfoximine-induced encephalopathy. Acta Neuropathol. 77, 357–368.

    Article  PubMed  CAS  Google Scholar 

  66. Jessy, J., Mans, A.M., De Joseph, R.M., and Hawkins, A. 1990, Hyperammonemia causes many of the changes found after portacaval shunting. Biochem. J. 272, 311–317.

    PubMed  CAS  Google Scholar 

  67. Raabe, W.A. 1987, Synaptic transmission in ammonia intoxication. Neurochem. Pathol. 6: 145–166.

    Article  PubMed  CAS  Google Scholar 

  68. Lockwood, A.H., Yap, E.W.G. and Wong, W.H. 1991, Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J. Cerebral Blood Flow Metab. 11: 337–341.

    Article  CAS  Google Scholar 

  69. McGeer, E.G., McGeer, P.L., Akiyama, H. and Harrop, R. 1989, Cortical glutaminase and glucose utilization in Alzheimer’s disease. J. Canad. Sci. Neurol. 16: 511–515.

    CAS  Google Scholar 

  70. Foster, N.L., Chase, T.N., Mansi, L., Brooks, R., Fedio, P., Patronas, N.J. and Dichiro, G. 1984, Cortical abnormalities in Alzheimer’s disease. Ann. Neurol. 16: 649–654.

    Article  PubMed  CAS  Google Scholar 

  71. Fukuyama, H., Harada, K., Yamauchi, H., Miyoshi, T., Yamagushi, S., Kimura, J., Kameyama, M., Senda, M., Yonekura, Y. and Konishi, J. 1991, Coronal reconstruction images of glucose metabolism in Alzheimer’s disease. J. Neurol. Sci. 106: 128–134.

    Article  PubMed  CAS  Google Scholar 

  72. Hoyer, S. 1991, Abnormalities of glucose metabolism in Alzheimer’s disease. Ann. N.Y. Acad. Sci. 640: 53–58.

    PubMed  CAS  Google Scholar 

  73. Frackowiak, R.S., Possili, C., Legg, N.J., Du Boulay, G.H., Marshall, J., Lenzi, G.L. and Jones, T. 1981, Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104: 753–778.

    Article  PubMed  CAS  Google Scholar 

  74. Heiss, W.D., Szelies, B., Kessler, J. and Herholz, K. 1991, Abnormalities of energy me- tabolism in Alzheimer’s disease studied with PET. Ann. N.Y. Acad. Sci. 640: 65–71.

    PubMed  CAS  Google Scholar 

  75. Parker, Jr. W.D., 1991, Cytochrome oxidase deficiency in Alzheimer’s disease. Ann. N.Y. Acad. Sci. USA 640: 59–64.

    Google Scholar 

  76. Liguri, G., Taddei, N.,Nassi, P., Matorraca, S., Nediani, C. and Sorbi, S. 1990, Changes in Na+,K+-ATPase, Ca2+-ATPase and some soluble enzymes related to energy metabolism in brains of patients with Alzheimer’s disease. Neurosci. Lett. 112: 338–342.

    Article  PubMed  CAS  Google Scholar 

  77. Gibson, G.E., Zimber, A., Krook, L., Richardson, E.P. and Visek, W.J. 1974, Brain his- tology and behavior of mice injected with urease. J. Neuropathol. Exp. Neurol. 33: 201–211.

    Article  PubMed  CAS  Google Scholar 

  78. Martin, H., Voss, K., Hufnagl, P., Wack, R. and Wassilew, G. 1987, Morphometric and densitometric investigations of protoplasmic astrocytes and neurons in hepatic encephalopathy. Exp. Pathol. 32: 198–237.

    Article  Google Scholar 

  79. Butterworth, R.F., Girard, G. and Giguère, J.F. 1988, Regional differences in the capacity for ammonia removal by brain following portacaval anastomosis. J. Neurochem. 51: 486–490.

    Article  PubMed  CAS  Google Scholar 

  80. Swain, M.S., Blei, A.T., Butterwortth, R.F. and Kraig, R.P. 1991, Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am; J. Physiol. 261 R1491–R1496.

    PubMed  CAS  Google Scholar 

  81. Pomara, N., Singh, R., Deptula, D., Chou, J.C.Y., Banay-Schwartz, M. and Le Witt, P.A. (1992) Glutamate and other CSF amino acids in Alzheimer’s disease. Am. J. Psychiatry 149: 251–254.

    PubMed  CAS  Google Scholar 

  82. Therrien, G. and Butterworth, R.F. 1991, Cerebrospinal amino acids in relation to neurological status in experimental portal-systemic encephalopathy. Metabolic Brain Dis. 6: 65–74.

    Article  CAS  Google Scholar 

  83. Tossman, U., Delin, A., Eriksson, L.S. and Ungerstedt, U. 1987, Brain cortical amino acids measured by intracerebral dialysis in portacaval shunted rats. Neurochem. Res. 12: 265–269.

    Article  PubMed  CAS  Google Scholar 

  84. Benowitz, L.I., Rodriguez, W., Paskevich, P., Mufson, E.J., Schenk, D. and Neve, R.L. 1989, The amyloid precursor protein is concentrated in neuronal lysosomes in normal and Alzheimer disease subjects. Exp. Neurol. 106: 237–250.

    Article  PubMed  CAS  Google Scholar 

  85. Cole, G.M., Huynh, T.V. and Saitoh, T. 1989, Evidence for lysosomal processing of amyloid beta-protein precursor in cultured cells. Neurochem. Res. 14: 933–939.

    Article  PubMed  CAS  Google Scholar 

  86. Kawai, M., Cras, P., Richey, P., Tabaton, M., Lowery, D.E., Gonzalez-DeWitt, P.A., Greenberg, B.G., Gambetty, P. and Perry, G. 1992, Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer’s disease. Am. J. Pathol. 140; 947–958.

    PubMed  CAS  Google Scholar 

  87. Cataldo, A.M., Thayer, C.Y., Bird, E.D., Wheelock, T.R. and Nixon, R.A. 1990, Lysosomal proteinase antigens are prominently localized within senile plaues of Alzheimer’s disease: evidence for a neuronal origin. Brain Res. 513: 181–192.

    Article  PubMed  CAS  Google Scholar 

  88. Caporaso, G.L., Gandy, S.E., Buxbaum, J.D. and Greengard, P. 1992, Chloroquine inhibits intracellular degradation but not secretion of Alzheimer â—A4 amyloid precursor protein. Proc. Natl. Acad. Sci. USA 89: 2252–2256.

    Article  PubMed  CAS  Google Scholar 

  89. Golde, T.E., Estus, S., Younkin, L.H., Selkoe, D.J. and Younkin, S.G. 1992, Processing of the amyloid precursor protein to potentially amyloidogenic derivatives. Science 255: 728–730.

    Article  PubMed  CAS  Google Scholar 

  90. Segelen, P.O. 1983, Inhibitors of lysosomal function. Meth. Enzymol. 96: 737–765.

    Article  Google Scholar 

  91. Glimelius, B., Westermark, B. and Wasteson, A. 1977, Ammonium ion interferes with the lysosomal degradation of glycosaminoglycans in cultures of human glial cells. Exp. Cell Res. 107: 201–217.

    Article  Google Scholar 

  92. Felipo, V., Minana, M.D., Wallacer, R. and Grisolia, S. 1988, Long-term ingestion of ammonium inhibits lysosomal proteolysis in rat liver. FEBS Lett. 234: 213–214.

    Article  PubMed  CAS  Google Scholar 

  93. Dickson, D.W., Farlo, J., Davies, P., Crystal, H., Fuld, P. and Yen, S.H. 1988, Alzhei- mer’s disease: a double-labeling immunohistochemical study of senile plaques. Am. J. Pathol. 132: 86–101.

    PubMed  CAS  Google Scholar 

  94. Felipo, V., Grau, E., Minana, M.D. and Grisolia, S. 1993, Ammonium injection induces N-methyl-D-aspartate receptor - mediated proteolysis of the microtubuleassociated protein MAP-2. J. Neurochem. 60: 1626–1630.

    Article  PubMed  CAS  Google Scholar 

  95. Tsuboi, M., Harasawa, K., Izawa, T., Komabayashi, T., Fujinami, H. and Suda, K. 1993, Intralysosomal pH and release of lysosomal enzymes in the rat liver after exhaustive exercise. J. Appl. Physiol. 74: 1628–1634.

    PubMed  CAS  Google Scholar 

  96. Leoni, P. and Dean, R.T. 1983, Mechanism of lysosomal enzyme secretion by human monocytes. Biochim. Biophys. Acta 762: 378–389.

    Article  PubMed  CAS  Google Scholar 

  97. Cataldo, A.M. and Nixon, R.A. 1990, Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc. Natl. Acad. Sci. USA 87: 3861–3865.

    Article  PubMed  CAS  Google Scholar 

  98. Cataldo, A.M., Paskevich, P.E., Kominami, E. and Nixon, R.A. 1991, Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA 88: 10998–11002.

    Article  PubMed  CAS  Google Scholar 

  99. Nakamura, Y, Takeda, M., Suzuki, H., Hattori, H., Tada, K., Hariguchi, S., Hashimoto, S. and Nishimura, T. 1991, Abnormal distribution of cathepsins in the brain of patients with Alzheimer’s disease. Neurosci. Lett. 130: 195–198.

    Article  PubMed  CAS  Google Scholar 

  100. Atanassov, C.L., Muller, C.D., Sarhan, S., Knödgen, B., Rebel, G. and Seiler, N. 1994, Effect of ammonia on endocytosis, cytokine production and lysosomal enzyme activity of a microglial cell line. Res. Immunol. 145: 277–288.

    Article  PubMed  CAS  Google Scholar 

  101. Atanassov, C.L., Muller, C.D., Dumont, S., Rebel, G., Poindron, P. and Seiler, N. 1995, Effect of ammonia on endocytosis and cytokine production by immortalized human microglia and astroglia cells. Neurochem Int. 27: 417–424.

    Article  PubMed  CAS  Google Scholar 

  102. Mukaida, N., Harada, A., Yasumoto, K. and Matsushima, K. 1992, Properties of pro-inflammatory cell type-specific leukocyte chemotactic cyokines, interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF). Microbiol. Immunol. 36: 773–789.

    PubMed  CAS  Google Scholar 

  103. Berkenbosch, F., Biewenga, J., Brouns, M., Rozemuller, J.M., Strijbos, P. and Van Dam, A.M. 1992, Cytokines and inflammatory proteins in Alzheimer’s disease. Res. Immunol. 143: 657–663.

    Article  PubMed  CAS  Google Scholar 

  104. McGeer, P.L. and Rogers, J. 1992, Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42: 447–448.

    Article  PubMed  CAS  Google Scholar 

  105. Curzon, G., Kantamaneni, B.D., Winch, J., Rochas-Bueno, A., Murray-Lyon, LM. and Williams, R. 1973, Plasma and brain tryptophan changes in experimental acute hepatic failure. J. Neurochem. 21: 137–145.

    Article  PubMed  CAS  Google Scholar 

  106. Record, C.O. 1991, Neurochemistry of hepatic encephalopathy. Gut 32: 1261–1263.

    Article  PubMed  CAS  Google Scholar 

  107. Bachmann, C. and Colombo, J.P. 1983, Increased tryptophan uptake into the brain in hyperammonemia. Life Sci. 33: 2417–2424.

    Article  PubMed  CAS  Google Scholar 

  108. Foster, A.C. and Schwarcz, R. 1989, Neurotoxic effects of quinolinic acid in the mammalian central nervous system. In Quinolinic Acid and Kynurenines (Stone, W. Ed.) CRC Press, Boca Raton, pp 173–192.

    Google Scholar 

  109. Kornhüber, J., Wichart, I., Riederer, P., Kleinberger, G. and Jellinger, K. 1989, Kynurenine in hepatic encephalopathy. In Quinolinic acid and Kynurenines (Stone, T.W. Ed.) CRC Press, Boca Raton, pp 275–281.

    Google Scholar 

  110. Moroni, F., Lombardi, G. and Carla, V. 1989, The measurement of quinolinic acid in the mammalian brain: Neuropharmacological and physiopathological studies. In Quinolinic Acid and Kynurenines (Stone, T.W. Ed.) CRC Press, Boca Raton, pp 53–62.

    Google Scholar 

  111. Grinde, B. 1989, Kynurenine and lysosomal proteolysis. In Quinolinic Acid and Kynurenines (Stone, T.W. Ed.) CRC Press, Boca Raton, pp 91–97.

    Google Scholar 

  112. Uribe, M. 1989, Nutrition, diet and hepatic encephalopathy. In Hepatic Encephalopathy: Pathophysiology and Treatment (Butterworth, R.F. and Pomier Layrargues, Eds.) Humana Press, Clifton, pp. 529–547.

    Google Scholar 

  113. Seiler, N. 1997, Ornithine aminotransferase as a therapeutic target in hyperammonemias. This volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Plenum Press, New York

About this chapter

Cite this chapter

Seiler, N. (1997). An Ammonia Hypothesis of Alzheimer Disease. In: Felipo, V., Grisolía, S. (eds) Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy. Advances in Experimental Medicine and Biology, vol 420. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5945-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5945-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45598-8

  • Online ISBN: 978-1-4615-5945-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics