Skip to main content

Hyperammonaemia without Portal Systemic Shunting Does Not Resemble Hepatic Encephalopathy

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 420))

Abstract

During our experimental studies on the role of ammonia in the pathogenesis of hepatic encephalopathyl we did the interesting observation: a 20 times increased blood ammonia concentration caused no symptoms of encephalopathy in SHAM-operated rats, but it did definitely in portacaval shunted (PCS) rats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butterworth RF, Giguère JF, Michaud J, Lavoie J, Pomier Layrargues G. Ammonia: Key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 1987; 6: 1–12.

    Article  PubMed  CAS  Google Scholar 

  2. Popken RJ, Kropveld D, Oosting J, Chamuleau RAFM. Qualitative analysis of EEG power density spectra in experimental hepatic encephalopathy. Neuropsychobiol 1983; 9: 235–43.

    Article  CAS  Google Scholar 

  3. Huizenga JR, Gips CH. Determination of blood ammonia using Ammonia Checker. Ann Clin Biochem 1983; 20: 187–9.

    PubMed  CAS  Google Scholar 

  4. Van Eijk HMH, van der Heyden MAH, van Berlo CLH and Soeters PB. Fully automated liquid chromatographic determination of amino acids. Clin Chem 1988; 34: 2510–3.

    PubMed  Google Scholar 

  5. Boer GJ, van der Woude TP, Kruisbrink J, van Heerikhuize J. Successful ventricular application of the miniaturized controlled-delivery Accurel technique for sustained enhancement of cerebrospinal fluid peptide levels in the rat. J Neusoci Meth 1984; 11: 281–9.

    Article  CAS  Google Scholar 

  6. Swain MS, Bergeron M, Audet R, Blei AT, Butterworth RF. Monitoring of neurotransmitter amino acids by means of an indwelling cisterna magna catheter: A comparison of two rodent models of fulminant liver failure. Hepatology 1992; 16: 1028–35.

    Article  PubMed  CAS  Google Scholar 

  7. James JH, Jeppsson B, Ziparo V, Fischer JE. Hyperammonemia, plasma amino acid imbalance, and blood-brain barrier amino acid transport: A unified theory of portal-systemic encephalopathy. Lancet 1979; 13: 772–5.

    Article  Google Scholar 

  8. Fischer JE, Baldessarini RJ. False neurotransmitters and hepatic failure. Lancet 1971;2:75–80.

    Article  PubMed  CAS  Google Scholar 

  9. Jeppsson B, James JH, Edwards LL, Fischer JE. Relationship of brain glutamine and brain neutral amino acid concentrations after portacaval anastomosis in rats. Eur J Clin Invest 1985; 15: 179–87.

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi H, Koehler RC, Brusilow SW, Traystman RJ. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 1991; 261: H825–9.

    PubMed  CAS  Google Scholar 

  11. Norenberg MD, Bender AS. Astrocyte swelling in liver failure: Role of glutamine and benzodiazepines. Acta Neurochir 1994; 60(suppl): 24–7.

    CAS  Google Scholar 

  12. Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor. Trends Neurosci 1987; 10: 299–302.

    Article  CAS  Google Scholar 

  13. Choi DW. Glutamate toxicity in cortical cell culture is calcium-dependent. Neurosci Lett 1985; 58: 293–7.

    Article  PubMed  CAS  Google Scholar 

  14. Chen HV, Pelligrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE Lipton SA. Open-channel block of Nmethyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992;12:4427–4436.

    PubMed  CAS  Google Scholar 

  15. Herrero JF, Headly PM, Parsons CG. Memantine selectively depresses NMDA receptor-mediated responses of rat spinal neurons in vivo. Neurosci Lett 1994;165:37–40.

    Article  PubMed  CAS  Google Scholar 

  16. Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 1995; 34: 1239–1258.

    Article  PubMed  CAS  Google Scholar 

  17. Müller WE, Mutschler E, Riederer P. Noncompetitive NMDA receptor antagonists with fast open-channel blocking kinetics and strong voltage-dependency as potential therapeutic agents for Alzheimer’s dementia. Pharmacopsychiatry 1995; 28: 113–124.

    Article  PubMed  Google Scholar 

  18. Kuchiwaka H, Inao S, Yamamato M, Yoshida K, Sugita K. An assessment of progression of brain edema with amino acid levels in cerebrospinal fluid and changes in electroencephalogram in an adult cat model of cold brain injury. Acta Neurochir 1994;60(s):62–64.

    Google Scholar 

  19. Bustos G, Abarca J, Forray MI, Gysling K, Bradberry CW, Roth RH. Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies. BRES 1992; 585: 105–15.

    CAS  Google Scholar 

  20. Montague PR, Gancayo CD, Winn MJ et al. Role of NO production in NMDA receptor mediated neurotransmittor release in cerebral cortex. Science 1994;263:973–977.

    Article  PubMed  CAS  Google Scholar 

  21. Hawkins RA, Jessy J, Mans AM, De Joseph MR. Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J Neurochem 1993; 60: 1000–6.

    Article  PubMed  CAS  Google Scholar 

  22. Mans AM, de Joseph MR, Donald WD, Vina JR, Hawkins RA. Early establishment of cerebral dysfunction after portacaval shunting. Am J Physiol 1990; 259: E104–10.

    PubMed  CAS  Google Scholar 

  23. Blei AT, Olafsson S, Therrien G, Butterworth RF. Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 1994; 19: 1437–44.

    Article  PubMed  CAS  Google Scholar 

  24. Bosman DK, Deutz NEP, De Graaff AA, vd Hulst RWN, van Eijk HMH, Boveé WMMJ, Maas MAW et al. Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 1990; 12: 281–90.

    Article  PubMed  CAS  Google Scholar 

  25. Swain M, Butterworth RF, Blei AT. Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 1992; 15: 449–53.

    Article  PubMed  CAS  Google Scholar 

  26. Mans AM, De Joseph MR, Hawkins RA. Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J Neurochem 1994; 63: 1829–38.

    Article  PubMed  CAS  Google Scholar 

  27. De Jong CHC, Deutz NEP, Soeters PB. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding. J Neurochem 1993; 60: 1047–57.

    Article  Google Scholar 

  28. Benjamin AM. Control of glutaminase activity in rat brain cortex in vitro: influence of glutamate, phosphate, ammonium, calcium and hydrogen ions. Brain Res 1981; 208: 363–77.

    Article  PubMed  CAS  Google Scholar 

  29. Cooper AJL, Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev 1987; 67: 440–519.

    PubMed  CAS  Google Scholar 

  30. Butterworth RF, Girard G, Giguère JF. Regional differences in the capacity for ammonia removal by brain following portacaval anastomosis. J Neurochem 1988; 51: 486–90.

    Article  PubMed  CAS  Google Scholar 

  31. Girard G, Butterworth RF. Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle. Di Dis Sci 1992; 7: 1121–6.

    Article  Google Scholar 

  32. Kanamori K, Ross BD. 15N NMR measurement of the in vivo rate of glutamine synthesis and utilization at steady state in the brain of the hyperammonemic rat. Biochem J 1993; 289: 461–8.

    Google Scholar 

  33. Kanamori K, Parivar F, Ross BD. A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats. NMR in Biomed 1993; 6: 21–6.

    Article  CAS  Google Scholar 

  34. Kanamori K, Ross BD, Kuo EL. Dependence of in vivo glutamine synthetase activity on ammonia concentration in rat brain studied by 1H-15N heteronuclear multiple quantum coherence-transfer NMR. Biochem J 1995; 311: 681–8.

    PubMed  CAS  Google Scholar 

  35. Krieger D, Krieger S, Jansen O, Gass P, Theilmann L, Lichtnecker H. Manganese and chronic hepatic encephalopathy. Lancet 1995; 346: 270–4.

    Article  PubMed  CAS  Google Scholar 

  36. Vogels BAPM, van Steynen B, Maas MAW,Jorning GGA, Chamuleau RAFM. The effects of ammonia and portal-systemic shunting on brain metabolism, neurotransmission and intracranial hypertension in hyperammonemia-induced encephalopathy. J Hepatol 1996;24:in press

    Google Scholar 

  37. Vogels BAPM, Maas MAW, Daalhuisen J, Quack G, Chamuleau RAFM. Memantine, a non-competitive NMDAreceptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology 1996;submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chamuleau, R.A.F.M., Vogels, B.A.P.M. (1997). Hyperammonaemia without Portal Systemic Shunting Does Not Resemble Hepatic Encephalopathy. In: Felipo, V., Grisolía, S. (eds) Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy. Advances in Experimental Medicine and Biology, vol 420. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5945-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5945-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7724-5

  • Online ISBN: 978-1-4615-5945-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics