Skip to main content

Convection in Crystal Growth under High Gravity on a Centrifuge

  • Chapter
Centrifugal Materials Processing

Abstract

We have theoretically analyzed buoyancy-driven convection in directional solidification configurations under the influence of additional forces acting on flow on a centrifuge, the centrifugal and the Coriolis forces. The influence of centrifugation on buoyancy-driven convection in the melt depends on the following conditions: the geometrical orientation of the melt cylinder on the centrifuge, the presence of radial temperature gradients in the melt (curved crystal-melt interface), the centrifuge radius, and the rotation rate of the centrifuge. The behaviour of convection depends on the complex interaction of buoyancy and Coriolis forces. It is demonstrated by theoretical considerations and experiments that a suppression of the vigor of convection up to one order of magnitude is possible under certain conditions on the centrifuge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Müller, G. Neumann, and W. Weber, The growth of homogeneous semiconductor crystals in a centrifuge by the stabilizing influence of the Coriolis force, J. Crystal Growth129: 8 (1992).

    Article  Google Scholar 

  2. H. Rodot, L.L. Regel, and A.M. Turtchaninov, Crystal growth of W-VI semiconductors in a centrifuge, J. Crystal Growth104: 280 (1990).

    Article  CAS  Google Scholar 

  3. V.A. Urpin, Convective flows during crystal growth in a centrifuge, in: “Materials Processing in High Gravity,” L.L. Regel and W.R. Wilcox, eds., Plenum Press, New York (1994) 35.

    Google Scholar 

  4. W.A. Arnold and L.L. Regel, Thermal stability and the suppression of convection in a rotating fluid on earth, ibid, p. 17.

    Google Scholar 

  5. W.A. Arnold, W.R. Wilcox, F. Carlson, A. Chait, and L.L. Regel, Transport mode during crystal growth in a centrifuge, J. Crystal Growth129: 24 (1992).

    Article  Google Scholar 

  6. H.J. Leister and M. Peric, Vectorized strongly implicit solving procedure for a seven-diagonal coefficient matrix, Int. J. Num. Meth. Heat Fluid Flow4: 159 (1994).

    Article  Google Scholar 

  7. H.J. Leister, “Numerische Simulation dreidimensionaler zeitabhängiger Strömungen unter dem Einfluß von Auftriebs-and Trägheitskräften,” Ph.D. Thesis, University Erlangen Nürnberg (1994).

    Google Scholar 

  8. D. Camel and J.J. Favier, Scaling analysis of convective solute transport and segregation in Bridgman crystal growth from the doped melt, J. Physique47: 1001 (1986).

    Article  CAS  Google Scholar 

  9. I.N. Bronstein and K.A. Semendjajew, “Taschenbuch der Mathematik,” Verlag Ham Deutsch, Thun and Frankfurt/Main (1987)

    Google Scholar 

  10. I.N. Bronstein and K.A. Semendjajew, “Taschenbuch der Mathematik,” Verlag Ham Deutsch, Thun and Frankfurt/Main (1987)

    Google Scholar 

  11. S. Motakef, Interference of buoyancy-induced convection with segregation during directional solidification: scaling laws, J. Crystal Growth102: 197 (1990).

    Article  CAS  Google Scholar 

  12. N. Ramachandran, J.P. Downey, P.A. Curreri, and J.C. Jones, Numerical modeling of crystal growth on a centrifuge for unstable natural convection, J. Crystal Growth136: 655 (1993).

    Article  Google Scholar 

  13. P. Skudarnov, L.L. Regel, and W.R. Wilcox, In - situ observation of convection on the centrifuge, in present volume.

    Google Scholar 

  14. J. Friedrich and G. Müller, Segregation in crystal growth under high gravity on a centrifuge: a comparison between experimental and theoretical results, in present volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedrich, J., Müller, G. (1997). Convection in Crystal Growth under High Gravity on a Centrifuge. In: Regel, L.L., Wilcox, W.R. (eds) Centrifugal Materials Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5941-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5941-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7722-1

  • Online ISBN: 978-1-4615-5941-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics