Skip to main content

Global Chemical Erosion during the Cenozoic: Weatherability Balances the Budgets

  • Chapter
Tectonic Uplift and Climate Change

Abstract

The question addressed here is whether global chemical weathering and erosion rates have increased over Cenozoic time in response to uplift of the Himalayas.1–2 Chemical weathering of the continents is a process whereby carbonic acid (derived from the atmosphere or from soil respiration and decomposition) is consumed. Thus it represents a sink for atmospheric CO2 and provides one link between uplift and climate change. The prevailing hypothesis concerning the cause of the long-term cooling of Cenozoic climates states that as a result of increased rates of silicate weathering, atmospheric CO2 levels have fallen, the magnitude of the greenhouse effect has been reduced, and thus the globally averaged climate has cooled. Such a scenario is consistent with the secular record of seawater Sr isotopic composition preserved in carbonates1,3–6 (Fig. la), which becomes increasingly radiogenic with time through the Cenozoic. This trend implies a growing influence of continental weathering, relative to seafloor hydrothermal activity, on the Sr isotopic composition of seawater.7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raymo, M. E., Ruddiman, W. F., and Froelich, P. N. (1988). Geology 16, p. 649.

    Article  Google Scholar 

  2. Raymo, M. E. (1989). Geology 19, p. 344.

    Article  Google Scholar 

  3. Hodeil, D. A., Mueller, P. A, McKenzie, J. A., and Mead, G. A. (1989). Earth Planet. Sci. Lett. 92, p. 165.

    Article  Google Scholar 

  4. Hodell, D. A., Mead, G. A., and Mueller, P. A. (1990). Chem. Geol. 80, p. 1.

    Google Scholar 

  5. Capo, R. C., and DePaolo, D. J. (1990). Science 249, p. 51.

    Article  Google Scholar 

  6. Richter, F. M., Rowley, D. B., and DePaolo, D. J. (1992). Earth Planet. Sci. Lett. 109, p. 11.

    Article  Google Scholar 

  7. Brass, G. W. (1976). Geochim. Cosmochim. Acta 40, p. 721.

    Article  Google Scholar 

  8. Caldeira, K., Arthur, M. A., Berner, R. A., and Lasaga, A. C. (1993). Nature 361, p. 123.

    Article  Google Scholar 

  9. Volk, T. (1993). Nature 361, p. 123.

    Article  Google Scholar 

  10. Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). J.Geophys. Res. 86, p. 9776.

    Article  Google Scholar 

  11. Berner, R. A., Lasaga, A. C., and Garrels, R. M. (1983). Am. J. Sci. 283, p. 641.

    Article  Google Scholar 

  12. François, L. M., and Walker, J. C. G. (1992). Am. J. Sci. 292, p. 81.

    Article  Google Scholar 

  13. Gibbs, M., and Kump, L. R. (1994). Paleoceanography 9, p. 529.

    Article  Google Scholar 

  14. Kominz, M. A. (1984). Am. Assoc. Pet. Geol. Mem. 36, p. 109.

    Google Scholar 

  15. Larson, R. L. (1991). Geology 19, p. 547.

    Article  Google Scholar 

  16. Engebretson, D. C., Kelley, K. P., Cashman, H. J., and Richards, M. A. (1992). GSA Today 2, p. 93.

    Google Scholar 

  17. Caldeira, K. (1992). Nature 357, p. 578.

    Article  Google Scholar 

  18. Kerrick, D. M., and Caldeira, K. (1993). Chem. Geol. 108, p. 201.

    Article  Google Scholar 

  19. Beck, R. A., Burbank, D. W., Sercombe, W. J., Olson, T. L., and Khan, A. M. (1995). Geology 23, p. 387.

    Article  Google Scholar 

  20. Caldeira, K. (1995). Am. J. Sci. 295, p. 1077.

    Article  Google Scholar 

  21. Palmer, M. R., and Elderfield, H. (1985). Nature 314, p. 526.

    Article  Google Scholar 

  22. Kump, L. R. (1989). Am. J. Sci. 289, p. 390.

    Article  Google Scholar 

  23. Berner, R. A., and Rye, D. (1992). Am. J. Sci. 292, p. 136.

    Article  Google Scholar 

  24. Berner, R. A. (1991). Am. J. Sci. 291, p. 339.

    Article  Google Scholar 

  25. Goddéris, Y. and François, L. M. (1995). Chem. Geol. 126, p. 169.

    Article  Google Scholar 

  26. Veizer, J. (1989). Ann. Rev. Earth Planet. Sci. 17, p. 141.

    Article  Google Scholar 

  27. Graham, D. W., Bender, M. L., Williams, D. F., and Keigwin, L. D. Jr. (1982). Geochim. Cosmochim. Acta 46, p. 1281.

    Article  Google Scholar 

  28. Chaudhuri, S., and Clauer, N. (1986). Chem. Geol. 59, p. 293.

    Article  Google Scholar 

  29. Holland, H. D. (1978). The Chemistry of the Atmosphere and Oceans, Wiley-Interscience, New York.

    Google Scholar 

  30. Blatt, H., and Jones, R. L. (1975). Geol. Soc. Am. Bull. 86, p. 1085.

    Article  Google Scholar 

  31. Meybeck, M. (1987). Am. J. Sci. 287, p. 401.

    Article  Google Scholar 

  32. Faure, G. (1986). Principles of Isotope Geology. John Wiley, New York.

    Google Scholar 

  33. Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H, Collier, R., Grant, B., Gordon, L. J., and Corliss, J. B. (1979). Earth Planet. Sci. Lett. 46, p. 1.

    Article  Google Scholar 

  34. Albarede, F., Michard, A., Monster, J. F., and Michard, G. (1981). Earth Planet. Sci. Lett. 55, p. 229.

    Article  Google Scholar 

  35. Berner, R. A. (1994). Am. J. Sci. 294, p. 56.

    Article  Google Scholar 

  36. Barron, E. J., Sloan, J. L. II, and Harrison, C. G. A. (1980). Palaeogeogr. Palaeoclim. Palaeoecol. 30, p. 17.

    Article  Google Scholar 

  37. Bluth, G. J. S. (1990). Effects of Paleogeology, Chemical Weathering, and Climate on the Global Geochemical Cycle of Carbon Dioxide. Ph.D. Dissertation, Pennsylvania State University, University Park, Pennsylvania.

    Google Scholar 

  38. Bluth, G. J. S., and Kump, L. R. (1991). Am. J. Sci. 291, p. 284.

    Article  Google Scholar 

  39. Bickle, M. J. (1994). Nature 367, p. 699.

    Article  Google Scholar 

  40. Scotese, C. R., Gahagan, L. M., and Larson, R. L. (1988). Tectonophysics 155, p. 27.

    Article  Google Scholar 

  41. Gaffin, S. R. (1987). Am. J. Sci. 287, p. 596.

    Article  Google Scholar 

  42. Arthur, M. A., Dean, W. E., and Claypool, G. E. (1985). Nature 315, p. 216.

    Article  Google Scholar 

  43. Dean, W. E., Arthur, M. A., and Claypool, G. E. (1986). Mar. Geol. 70, p. 119.

    Article  Google Scholar 

  44. Popp, B. N., Takigiku, T., Hayes, J. M., Louda, J. W., and Baker, E. W. (1989). Am. J. Sci. 289, p. 436.

    Article  Google Scholar 

  45. Rau, G. H., Takahashi, T., and Des Marais, D. J. (1898). Nature 341, p. 516.

    Article  Google Scholar 

  46. Rau, G. H., Froelich, P. N., Takahashi, T., and Des Marais, D. J. (1991). Paleoceanography 6, p. 335.

    Article  Google Scholar 

  47. Laws, E. A., Popp, B. N., Bidigare, R. R, Kennicutt, M. C., and Macko, S. A. (1995). Geochim. Cosmochim. Acta 59, p. 1131.

    Article  Google Scholar 

  48. Lasaga, A. C., Berner, R. A., and Garrels, R. M. (1985). In: The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present, (E. T. Sundquist and W. S. Broecker, eds.), pp. 397–411. American Geophysical Union, Washington, D.C.

    Google Scholar 

  49. Volk, T. (1987). Am. J. Sci. 287, p. 763.

    Article  Google Scholar 

  50. Edmond, J. M., Palmer, M. R., Measures, C. I., Grant, B., and Stallard, R. F. (1995). Geochim. Cosmochim. Acta 59, p. 3301.

    Article  Google Scholar 

  51. Davies, T. A., and Worsley, T. R. (1981). Soc. Econ. Paleont. Mineral. Spec. Pub. 32, p. 169.

    Google Scholar 

  52. Delaney, M. L., and Boyle, E. A. (1988). Paleoceanography 3, p. 137.

    Article  Google Scholar 

  53. Opdyke, B. N., and Wilkinson, B. H. (1988). Paleoceanography 3, p. 685.

    Article  Google Scholar 

  54. Milliman, J. D. (1993). Global Biogeochem. Cycles 7, p. 927.

    Article  Google Scholar 

  55. Broecker, W. S., and Peng, T. S. (1982). Tracers in the Sea. Lamont-Doherty Geological Observatory, New York.

    Google Scholar 

  56. Berner, E. K., and Berner, R. A. (1987). The Global Water Cycle: Geochemistry and Environment. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  57. Morse, J. W., and Mackenzie, F. T. (1990). Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam.

    Google Scholar 

  58. Raymo, M. E., and Ruddiman, W. F. (1992). Nature 359, p. 117.

    Article  Google Scholar 

  59. Derry, L. A., and France-Lanord, C. (1996). Paleoceanography 11, p. 267.

    Article  Google Scholar 

  60. Delaney, M. L., and Filippelli, G. M. (1994). Paleoceanography 9, p. 513.

    Article  Google Scholar 

  61. Filippelli, G. M., and Delaney, M. L. (1994). Paleoceanography 9, p. 643.

    Article  Google Scholar 

  62. Palmer, M. R., and Edmond, J. (1992). Geochim. Cosmochim. Acta 56, p. 2099.

    Article  Google Scholar 

  63. Derry, L. A., and France-Lanord, C. (1996). Earth Planet. Sci. Lett. 142, p. 59.

    Article  Google Scholar 

  64. Barron, E. J. (1985). Palaeogeogr. Palaeoclim. Palaeoecol. 50, p. 729.

    Article  Google Scholar 

  65. Barron, E. J., and Washington, W. M. (1985). In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (E. T. Sundquist and W. S. Broeker, eds.), pp. 546–553. American Geophysical Union, Washington, D.C.

    Google Scholar 

  66. Freeman, K. H., and Hayes, J. M. (1992). Global Biogeochem. Cycles 6, p. 185.

    Article  Google Scholar 

  67. Drever, J. I., and Zobrist, J. (1992). Geochim. Cosmochim. Acta 56, p. 3209.

    Article  Google Scholar 

  68. Armstrong, R. E. (1971) Nature Phys. Sci. 230, p. 132.

    Google Scholar 

  69. Kump, L. R., and Alley, R. B. (1994). In: Material Fluxes on the Surface of the Earth (Board on Earth Sciences, ed.), pp. 46–60. National Academy Sciences, Washington, D.C.

    Google Scholar 

  70. Berner, R. A. (1992). Geochim. Cosmochim. Acta 56, p. 3225.

    Article  Google Scholar 

  71. Schwartzmann, D. W., and Volk, T. (1989). Nature 340, p. 457.

    Article  Google Scholar 

  72. Kump, L. R., and Volk, T. (1991). In: Scientists on Gaia (S. H. Schneider and P. J. Boston, eds.), pp. 191–199. MIT Press, Cambridge, Mass.

    Google Scholar 

  73. Stallard, R. F., and Edmond, J. M. (1983). J. Geophys. Res. 88, p. 9671.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kump, L.R., Arthur, M.A. (1997). Global Chemical Erosion during the Cenozoic: Weatherability Balances the Budgets. In: Ruddiman, W.F. (eds) Tectonic Uplift and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5935-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5935-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7719-1

  • Online ISBN: 978-1-4615-5935-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics