Skip to main content

Chemical Weathering Yields from Basement and Orogenic Terrains in Hot and Cold Climates

  • Chapter
Tectonic Uplift and Climate Change

Abstract

The 18O record in benthonic foraminifera over the last 70 million years can only be interpreted in terms of a more-or-less continual climatic deterioration over the period of record.1–2 Abyssal water temperatures record winter conditions in the oceanic areas where climatic extremes generate the densest waters. The isotopic temperatures in the abyssal waters in the early Eocene, 50 million years ago, were about 15°C higher than at present. It is unlikely that a Mediterranean-type “warm salty bottom water” could have dominated the global circulation in the face of freezing temperatures as ice-brine formation should have prevailed as the major source of convection, then much as it does today. Hence the mean surface temperature must have been much higher than at present, and the latitudinal climatic gradient much lower; this is in accord with the fossil record. The only feasible way to achieve this climatic optimum appears to be through an enhanced greenhouse effect involving greatly elevated atmospheric pCO2, despite the fact that general circulation model (GCM) runs following this approach have been less than successful in simulating the conditions inferred from the geologic observations.3–6 The problem then is to explain the mechanisms responsible for large oscillations (order tenfold) in pCO2 on geologic timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Savin, S. M. (1977). Ann. Rev. Earth Planet. Sci. 3, p. 319.

    Article  Google Scholar 

  2. Zachos, J. C., Stott, L. D., and Lohmann, K. G. (1944). Paleoceanography 9, p. 353.

    Article  Google Scholar 

  3. Crowley, T. J., and North, G. R. (1991). Paleoclimatology, [pmxford University Press, New York.

    Google Scholar 

  4. Crowley, T. J. (1993). Tectonophysics 122, p. 277.

    Article  Google Scholar 

  5. Greenwood, D. R., and Wing, S. L. (1995). Geology 23, p. 1044.

    Article  Google Scholar 

  6. Rayner, R. J. (1995). Palaeogeog. Palaeoclim. Palaeoecol. 119, p. 385.

    Article  Google Scholar 

  7. Edmond, J. M., and Huh, Y. (1997). Rev. Geophys. 35, in press.

    Google Scholar 

  8. Rea, D. K., and Rull, L. J. (1996). Earth Planet. Sci. Lett. 140, p. 1.

    Article  Google Scholar 

  9. Walker, J. C. G., Hays, P. B., and Kastings, J. F. (1981). J. Geophys. Res. 86, p. 9776.

    Article  Google Scholar 

  10. Berner, R. A. (1994). Am. J. Sci. 294, p. 56.

    Article  Google Scholar 

  11. Raymo, M. E, and Ruddiman, W. F. (1992). Nature 359, p. 117.

    Article  Google Scholar 

  12. Eyles, N. (1993). Earth-Sci. Rev. 35, p. 1.

    Article  Google Scholar 

  13. Frakes, L. A., Francis, J. E., and Sytus, J. 1. (1992). Climate Modes of the Phanerozoic, Cambridge University Press, New York.

    Book  Google Scholar 

  14. Holland, H. D. (1978). The Chemistry of the Atmosphere and Oceans, Wiley-Interscience, New York.

    Google Scholar 

  15. UNESCO (1971). Discharge of Selected Rivers of the World, UNESCO Press, New York.

    Google Scholar 

  16. UNESCO (1977). Atlas of World Water Balance, UNESCO Press, New York.

    Google Scholar 

  17. Edmond, J. M., Palmer, M. R., Measures, C. I., Grant, B., and Stallard, R. F. (1995). Geochim. Cosmochim. Acta 59, p. 3301.

    Article  Google Scholar 

  18. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnik, R. B., Nelson, H. F., and Otto, J. B. (1982). Geology 10, p. 516.

    Article  Google Scholar 

  19. Garrels, R. M. (1967). In: Researches in Gechemistry, Vol. 2 (P. H. Abelson, ed.), pp. 405–420. John Wiley, New York.

    Google Scholar 

  20. Berner, R. A., Lasaga, A. C., and Garrels, R. M. (1983). Am. J. Sci. 283, p. 641.

    Article  Google Scholar 

  21. Meade, R. H., Yuzyk, T. R., and Day, T. J. (1990). In: The Geology of North America, Vol 0-1, pp. 255–280. Geological Society of America, Denver.

    Google Scholar 

  22. Meade, R. H. (1994). Quat. Intern. 21, p. 29.

    Article  Google Scholar 

  23. Goldstein, S. L., O’Nions, R. H., and Hamilton, P. J. (1984). Earth Planet Sci. Lett. 70, p. 221.

    Article  Google Scholar 

  24. Faure, G. (1986). Principles of Isotope Geology, John Wiley, New York.

    Google Scholar 

  25. Edmond, J. M. (1992). Science 258, p. 1594.

    Article  Google Scholar 

  26. Livingston, D. A. (1963). U.S.G.S. Prof. Paper 400G, p. 1.

    Google Scholar 

  27. Meybeck, M. (1979). Rev. Geol. Dyn. Geog. Phys. 21, p. 215.

    Google Scholar 

  28. Summerfield, M. A., and Hulton, N. J. (1994). J. Geophys. Res. 99, p. 13871.

    Article  Google Scholar 

  29. Gibbs, R. J. (1967). Geol. Soc. Am. Bull. 78, p. 1203.

    Article  Google Scholar 

  30. Gibbs, R. J. (1972). Geochim. Cosmochim. Acta 36, p. 1061.

    Article  Google Scholar 

  31. Reeder, S. W., Hitchon, B., and Levinson, A. A. (1972). Geochim. Cosmochim. Acta 36, p. 825.

    Article  Google Scholar 

  32. Stallard, R. F., and Edmond, J. M. (1983). J. Geophys. Res. 88, p. 9671.

    Article  Google Scholar 

  33. Sarin, M. M., Krishnaswami, S., Dilli, K., Soyamajula, B. L. K, and Moore, W. S. (1989). Geochim. Cosmochim. Acta 53, p. 997.

    Article  Google Scholar 

  34. Nègrel, P., Allègre, C. J., Dupré, B., and Lewin, E. (1993). Earth Planet. Sci. Lett. 120, p. 59.

    Article  Google Scholar 

  35. Dupré, B., Gaillardet, J., Rousseau, D., and Allègre, C. J. (1996). Geochim. Cosmochim. Acta 60, 1301.

    Google Scholar 

  36. Cameron, E. M., Hall, G. E. M., Veizer, J., and Krouse, H. R. (1995). Chem. Geol. 122, p. 149.

    Article  Google Scholar 

  37. Edmond, J. M., Palmer, M. R., Measures, C. I., Brown, E. T., and Huh, Y. (1996). Geochim. Cosmochim. Acta 60, p. 2949.

    Article  Google Scholar 

  38. Yang, C., Telmer, K., and Veizer, J. (1996). Geochim. Cosmochim. Acta 60, p. 851.

    Article  Google Scholar 

  39. Newton, R. M., Weintraub, J., and April, R. (1987). Biogeochemistry 3, p. 21.

    Article  Google Scholar 

  40. Velochko, A. A. (1992). Late Quaternary Environments of the Soviet Union, University of Minnesota Press.

    Google Scholar 

  41. Twidale, C. R. (1982). Granite Landforms, Elsevier, New York.

    Google Scholar 

  42. Twidale, C. R. (1990). J. Geol. 98, p. 343.

    Article  Google Scholar 

  43. Zonenshain, L. P., Kuzmin, M. I., and Natapov, L. M. (1990). Geology of the USSR: A Plate Tectonic Synthesis, American Geophysical Union, Geodynamics Series, Vol. 21.

    Book  Google Scholar 

  44. Palmer, M. R., and Edmond, J. M. (1992). Geochim. Cosmochim. Acta 56, p. 2099.

    Article  Google Scholar 

  45. Clapperton, C. (1993). Quaternary Geology and Geomorphology of South America, Elsevier, New York.

    Google Scholar 

  46. Johnsson, M. J., Stallard, R. F., and Lundberg, N. (1991). Geol. Soc. Am. Bull. 103, p. 1622.

    Article  Google Scholar 

  47. Berner, E. K., and Berner, R. A. (1987). The Global Water Cycle, Prentice-Hall, Engelwood Cliffs, N.J.

    Google Scholar 

  48. Molnar, P., and Chen, W. (1978). Nature 273, p. 218.

    Article  Google Scholar 

  49. Krishnaswami, S., Trivedi, R., Sarin, M. M., Ramesh, R., and Sharma, K. K. (1992). Earth Planet. Sci. Lett. 109, p. 243.

    Article  Google Scholar 

  50. Le Fort, P., Cuney, M., Deniel, C. France-Lanord, C., Sheppard, S. M. F., Upretti, B. N., and Vidal, P. (1987). Tectonophysics 134, p. 39.

    Article  Google Scholar 

  51. Palmer, M. R., and Edmond, J. M. (1989). Earth Planet. Sci. Lett. 92, p. 11.

    Article  Google Scholar 

  52. Einsele, G, Ratschbacher, L., and Wetzel, A. (1996). J. Geol. 104, p. 163.

    Article  Google Scholar 

  53. Dürr, S. B. (1996). Geol. Soc. Am. Bull. 108, p. 669.

    Article  Google Scholar 

  54. Liu, G., and Einsele, G. (1994). Geol. Rundsch. 83, p. 32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edmond, J.M., Huh, Y. (1997). Chemical Weathering Yields from Basement and Orogenic Terrains in Hot and Cold Climates. In: Ruddiman, W.F. (eds) Tectonic Uplift and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5935-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5935-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7719-1

  • Online ISBN: 978-1-4615-5935-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics