Skip to main content

Algebraic Approach to Baryon Structure

  • Chapter
  • 220 Accesses

Abstract

In the usual description of baryons in terms of three constituents, the wave-function is a product of a space part and an internal spin-flavor-color part. Algebraic methods have been used extensively in the past to describe the internal part in terms of the symmetry groups SU sf (6)⊗SU c (3) [1, 2]. The difference between models lies in different assumptions on the spatial dynamics of the three constituents. Quark potential models in nonrelativistic [3] or relativized [4] forms emphasize the single-particle aspects of quark dynamics for which only a few low-lying configurations in the confining potential contribute significantly to the eigenstates of the Hamiltonian. Excited baryons in this description correspond to single-particle excitations of levels in the confining potential. On the other hand, flux-tube models, soliton models as well as some regularities in the observed spectra (e.g. linear Regge trajectories, parity doubling) hint that an alternative, collective type of dynamics may play a role in the structure of baryons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gell-Mann, Phys. Rev. 125 (1962), 1067; Y. Ne’eman, Nucl. Phys. 26 (1961), 222.

    Google Scholar 

  2. F. Gürsey and L. A. Radicati, Phys. Rev. Lett. 13 (1964), 173.

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Isgur and G. Karl, Phys. Rev. D18 (1978), 4187; D19 (1979), 2653; D20 (1979), 1191.

    Google Scholar 

  4. S. Capstick and N. Isgur, Phys. Rev. D34 (1986), 2809.

    ADS  Google Scholar 

  5. R. Bijker, F. Iachello and A. Leviatan, Ann. Phys. (N.Y.) 236 (1994), 69.

    Article  ADS  Google Scholar 

  6. R. Bijker and A. Leviatan, these proceedings.

    Google Scholar 

  7. R. Bijker, F. Iachello and A. Leviatan, Phys. Rev. C54 (1996), 1935.

    ADS  Google Scholar 

  8. R. Bijker, F. Iachello and A. Leviatan, preprint nucl-th/9608057, Phys. Rev. D, in press.

    Google Scholar 

  9. R. Bijker and A. Leviatan, in: Symmetries in Science VII: Spectrum Generating Algebras and Dynamic Symmetries in Physics, B. Gruber and T. Otsuka (eds.), Plenum Press, New York, 1993, 87; R. Bijker and A. Leviatan, Rev. Mex. Fís. 39, Suplemento 2, (1993) 7; ibid. 42 Suplemento 2 (1995), 62; A. Leviatan and R. Bijker, πN Newsletter 11 (1995), 142.

    Google Scholar 

  10. N. Isgur, G. Karl and R. Koniuk, Phys. Rev. Lett. 41 (1978), 1269.

    Article  ADS  Google Scholar 

  11. J. L. Friar, Part. and Nucl. 4 (1972), 153; R. D. Carlitz, S. D. Ellis and R. Savit, Phys. Lett. B68 (1977), 443.

    Google Scholar 

  12. N. Isgur, G. Karl and D. W. L. Sprung, Phys. Rev. D23 (1981), 163.

    ADS  Google Scholar 

  13. Y. Tzeng and S. S. Hsiao, Il Nuovo Cimento 106 (1993), 573.

    Article  Google Scholar 

  14. F. E. Close and R. R. Hogan, Nucl. Phys. B185 (1981), 333; 0. V. Mawell and V. Vento. Nucl. Phys. A407 (1983), 366; S. Theberge, A. W. Thomas and G. A. Miller, Phys. Rev. D22 (1980), 2838.

    Google Scholar 

  15. F. Iachello, A. D. Jackson and A. Lande, Phys. Lett. B43 (1973), 191. G. Höhler, E. Pietarinen, I. Sabba-Stefanescu, F. Borkowski, G. G. Simon, V. H. Walther and R. D. Wendling, Nucl. Phys. B114 (1976), 505.

    Google Scholar 

  16. K. Johnson and C. B. Thorn, Phys. Rev. D13, (1974) 1934; I. Bars and H. J. Hanson, Phys. Rev. D13, (1974) 1744.

    Google Scholar 

  17. A. Le Yaouanc, L. Oliver, O. Pène and J.-C. Raynal, Hadron transitions in the quark model, Gordon and Breach, 1988.

    Google Scholar 

  18. Z. Li and R. Workman, Phys. Rev. C53 (1996), R549.

    ADS  Google Scholar 

  19. C. Gobbi, F. Iachello and D. Kusnezov, Phys. Rev. D50 (1994), 2048.

    ADS  Google Scholar 

  20. R. Koniuk and N. Isgur, Phys. Rev. Lett. 44 (1980), 845; Phys. Rev. D21 (1980), 1868.

    Google Scholar 

  21. S. Capstick and W. Roberts, Phys. Rev. D47 (1993), 1994; ibid. D49 (1994), 4570.

    Google Scholar 

  22. R. H. Dalitz, xxx in: Quarks and Hadronic Structure, M. Morpurgo (ed.), Plenum, New York, 1977.

    Google Scholar 

  23. Particle Data Group, Phys. Rev. D54 (1996), 1.

    Google Scholar 

  24. N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B362 (1995), 23.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leviatan, A., Bijker, R. (1997). Algebraic Approach to Baryon Structure. In: Gruber, B., Ramek, M. (eds) Symmetries in Science IX. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5921-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5921-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7715-3

  • Online ISBN: 978-1-4615-5921-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics