Skip to main content

Biology and Biochemistry of Underground Plant Storage Organs

  • Chapter
Functionality of Food Phytochemicals

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 31))

Abstract

Higher plants have evolved various ways of accumulating large amounts of assimilates, including both primary and secondary metabolites (micro- and macromolecules), in a single organ/location. Specialized cells and tissues such as trichomes, nectaries, and resin canals synthesize compounds which may protect the plants against pathogens and pests. A major mode of assimilate accumulation is the formation of seeds and fruits, which in most cases are the end result of sexual reproduction, although seeds can also originate through apomixis and fruits through treatment with growth regulators. A substantial amount of information is now available on the developmental and biochemical aspects of such organs,1 including the accumulation of starch,2 proteins,3 and a wide diversity of phytochemicals.4 In contrast, much less is known about the phytochemistry, biochemistry, and development of underground storage organs. This is surprising, considering that storage roots and tubers such as cassava, sweet potato, and potato constitute important staples for people in developing as well as developed countries in both tropical and temperate areas. This review summarizes some selected aspects of the phytochemistry, biochemistry, and ethnobotany of underground plant storage organs with emphasis on roots and tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lopez, M., Larkins, B. 1993. Endosperm origin, development and function. Plant Cell 5:1383–1399.

    Google Scholar 

  2. MARTIN, C, Smith, A. 1995. Starch biosynthesis. Plant Cell 7:971–985.

    PubMed  CAS  Google Scholar 

  3. Shewry, P.R. 1995. Plant storage proteins. Biol. Rev. Cambridge Physiol. Soc. 70:375–426.

    Article  CAS  Google Scholar 

  4. Harborne, J. B. 1993. Introduction to Ecological Biochemistry. Academic Press, Great Britain, 318 pp.

    Google Scholar 

  5. Flores, H.E., WEBER, C, Puffett, J. 1996. Underground metabolism: The biosynthetic potential of roots. In: Roots:The Hidden Half, (Y. Waisel, A. Eshel, U. Kafkafi, eds.), 2nd Ed., Marcel Dekker, New York. pp. 931–956..

    Google Scholar 

  6. Sauer, C.O. 1969. Agricultural Origins and Dispersals, the Domestication of Animals and Foodstuffs. 2nd Ed., Cambridge, MA., M.I.T. Press, 175 pp.

    Google Scholar 

  7. Simpson B.B, Conner-Ogorzaly, M. 1995. Economic Botany, Plants in Our World, 2nd Ed. McGraw-Hill, New York, 640 pp.

    Google Scholar 

  8. Richardson, M. 1991. Seed storage proteins: The enzyme inhibitors. In: Methods in Plant Biochemistry, Vol. 5. Academic Press, New York, pp. 259–305.

    Google Scholar 

  9. Li, H.P. 1985. Potato Physiology. Academic Press, Orlando, FL, 586 pp.

    Google Scholar 

  10. Bietz, J.A. 1983. Separation of cereal proteins by reversed-phase high-performance liquid Chromatographic. J. Chrom. 255:219–238.

    Article  CAS  Google Scholar 

  11. Kasarda, D.D., Autran, J., Lew, E.J., Nimmo, C.C., Shewry, P. 1983. N-terminal amino acid sequences of É-gliadins and É-secalins: Implications of the evolution of prolamin genes. Biochem. Biophys. Acta 747:138–150.

    Article  CAS  Google Scholar 

  12. Peterson, D.M., Smith, D. 1976. Changes in nitrogen and carbohydrates fractions in developing oat groats. Crop Sci. 16:67–71.

    Article  CAS  Google Scholar 

  13. Irwin, S.D., Keen, J.N., Findlay, J.B., Lord, J.M. 1990. The Recinm communis 2S albumins precursor: a single pre-protein must be processed into two different heterodimeric storage proteins. Mol. General Gen. 222:402–408

    Google Scholar 

  14. Menendez-Arias, L., Monsalve, R.L., Gavilanea, J.G., Rodriguez, R. 1987. Molecular and spectroscopic characterization of a low molecular weight seed storage protein from yellow mustard (Sinapsis alba). Eur. J. Biochem. 19:899–907.

    CAS  Google Scholar 

  15. Casey, R., DOMONEY, C, Smith, A.M. 1986. Legume storage proteins and their genes. In: Surveys of Plant Molecular and Cell Biology, Vol. 3. Oxford University Press, Oxford, pp. 1–95.

    Google Scholar 

  16. Argos, P., Narayana, S.V., Nielsen, N.C. 1985. Structurai similarity between legumin and vicilin storage protein from legumes. EMBO J. 4:1111–1117.

    PubMed  CAS  Google Scholar 

  17. Harlan, J.R. 1992. Crops and Man: American Society of Agronomy. 2nd ed. Madison, WI, 284 pp.

    Google Scholar 

  18. NATIONAL RESEARCH COUNCIL. 1989. Lost Crops of the Incas: Little known Plants of the Andes with Promise for Worldwide Cultivation. National Academy Press, Washington, D.C., 407 pp.

    Google Scholar 

  19. Hernandez, J.E., Leon, J. 1992. Cultivos Marginados: Otra Perspectiva de 1492. Organizacion de las Naciones Unidas para la Agriculture y la Alimentacion, Roma, 339 pp.

    Google Scholar 

  20. Tapia, M.E. 1993. Semillas Andinas: El Banco de Oro. Consejo Nacional de Ciencia y Tecnologia (CONCYTEC), Lima, Peru, 76 pp.

    Google Scholar 

  21. Murra, J.V. 1975. Formaciones Economicas y Politicas del Mundo Andino. Institute de Estudios Peruanos, Lima, 339 pp.

    Google Scholar 

  22. Morris, C., VON Hagen, A. 1993. The Inca Empire and its Andean Origins. Abbeville Press, New York, 251 pp.

    Google Scholar 

  23. CENTRO INTERNACIONAL DE LA PAPA. 1993. EI Agroecosystema Andieo: Probleinas, Limitaciones, Perspectivas. Centro Internacional de la Papa, Lima, Peru, 8-pp.

    Google Scholar 

  24. King, S.R. 1987. Four endemic andean tuber crops: promising food resources for agricultural diversification. Mountain Research and Development 7(1): 33–39.

    Article  Google Scholar 

  25. Hodge, W.H. 1954. The edible arracacha-a little known root crop of the Andes. Econ. Bot. 8:95–221.

    Article  Google Scholar 

  26. Tello, J., Hermann, M., Calderon, A. 1992. La maca (Lepidlum Meyenii Walp): Cultivo alimenticio potencial para las zonas alto andinas. Boletin de Lima 81:59–66.

    Google Scholar 

  27. Janick, J., Simon, J.E. 1990. New Crops. John Wiley and Sons, New York, 23. pp.

    Google Scholar 

  28. Montaldo, A. 1977. Cultivo de Raices y Tubercules Tropicales. IIC A, San Jose, Costa Rica, 284 pp.

    Google Scholar 

  29. Brush, S.B., CARNEY, HJ., HUAMAN. Z. 1981. Dynamics of Andean potato agriculture. Econ. Bot. 35:70–88.

    Article  Google Scholar 

  30. Sang-Go, S., Peterson, J.E., Stiekema, W.J., Hannapel, D.J. 1990. Purification and characterization of the 22-kilodalton potato tuber proteins. Plant Physiol. 94:40–45.

    Article  Google Scholar 

  31. Mignery, G.A., Pikaard, C.S., Park, W.D. 1984. Molecular characterization of patatin multigene family of potato. Gene 62:27–44.

    Article  Google Scholar 

  32. Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J., Willmitzer, L. 1989. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 8:23–29.

    PubMed  CAS  Google Scholar 

  33. Paiva, E., Lister, R., Park, W. 1983. Induction and accumulation of major tuber proteins of potato stems and petioles. Plant Physiol. 71:161–168.

    Article  PubMed  CAS  Google Scholar 

  34. Brodgon, W.G., Dickinson, J. 1983. A microassay system for measuring esterase activity and protein concentration in small samples and in high pressure liquid chromatography eluate fractions. Anal. Biochem. 131:499–503.

    Article  Google Scholar 

  35. Splittstoesser, W.E. 1977. Protein quality and quantity of tropical roots and tubers. HortSci. 12:294–298.

    CAS  Google Scholar 

  36. Dickey, L., Collins, W., Young, C. 1984. Root protein and quality in a seedling population of sweet potatoes. HortSci. 19:689–692.

    CAS  Google Scholar 

  37. Varon, D., COLLINS W. 1989. Ipomoein is the major soluble protein of sweet potato storage roots. HortSci. 24:829–830.

    CAS  Google Scholar 

  38. JONES, D,B., Gersdorff, C.E. 1931. Ipomoein a globulin from sweet potato, Ipomoea batatas. Isolation of a secondary protein derived from ipomoein by enzymatic action. J. BiolChem. 93:119–126.

    CAS  Google Scholar 

  39. Maesh1Ma, M., Sasaki, T., Asahi, T. 1985. Characterization of proteins in sweet potato tuberous roots. Phytochemistry 24:1899–1902.

    Article  CAS  Google Scholar 

  40. Hattory, T., Matsuoka, K., Nakamura, K. 1988. Subcellular localization of the sweet potato tuberous root storage protein. Agric. Biol. Chem. 52:1057–1059.

    Article  Google Scholar 

  41. Ohto, M., Nakamura-Kjto, K., Nakamura, K. 1992. Induction of expression of genes coding for sporamin and β-amylase by poly galacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol. 99:422–427.

    Article  PubMed  CAS  Google Scholar 

  42. Orbegoso, A.G. 1960. Estudios sobre la oca (Oxalis tuberosa) con especial reference a su estructura y variabilidad. Agron. 27:28–38.

    Google Scholar 

  43. Cortes, H.B. 1977. Avances en la investigacion de la oca. In: Advances en las Investigaciones sobre Tuberculos Alimenticios de los Andes. PISA. IICA, Lima, 144 pp.

    Google Scholar 

  44. Cortes, H.B. 1981. Avances de la investigacion en tres tuberculos Andinos. Curso Sobre Manejo de la Produccion Agraria en Laderas. IICA, Bogota, Colombia, 200 pp.

    Google Scholar 

  45. Johns, T., Towers, G.H.N. 1981. Isothiocyanates and thioureas in enzyme hydrolases of Tropaeolum tuberosum. Phytochemistry 20:2687–2689.

    Article  CAS  Google Scholar 

  46. Hodge, W.H. 1957. Three native tubers of the high Andes. Econ. Bot. 5:185–201.

    Article  Google Scholar 

  47. Johns, T., Kitts, W.D., Newsome, F., Towers, G.H.N. 1982. Anti-reproductive and other medicinal effects of Tropaeolum tuberosum. J. Ethnopharmacol. 5:149–161.

    Article  PubMed  CAS  Google Scholar 

  48. Johns, T. 1990. With Bitter Herbs They Shall Eat It: Chemical Ecology and the Origins of Human Diet and Medicine. The University of Arizona Press, Tucson, 356 pp.

    Google Scholar 

  49. King, S., Gershoff, S. 1987. Nutritional evaluation of three underexploited Andean tubers: Oxalis tuberosa (Oxalidaceae), Ullucus tuberosus (Basellaceae), and Tropaelolumetuberosum (Tropalaceae). Econ. Bot. 41:503–511.

    Article  Google Scholar 

  50. Tapia, M.E. 1981. Los Tuberculos Andinos. PISA. IICA, Lima, 114 pp.

    Google Scholar 

  51. Caseda, F., Rossel, J. 1985. Entomologia de los Cultivos Andinos: estudio de lascomunidades campesinas. Editorial Universitaria 85, Universidad Nacional Agraria, La Molina, Lima, 155 pp.

    Google Scholar 

  52. King, S.R. 1988. Economic Botany of the Andean Tuber Crop Complex: Lepidium meyenii. Oxalis tuberosa, Tropaeolum tuberosum and Ullucus tuberosus. Ph.D. dissertation, Graduate Faculty in Biology, University of New York.

    Google Scholar 

  53. IBPGR. 1982. Plant genetic resources of the Andean region. Proceedings of meeting of IBGR, IICA, and JUNAC, Lima, Peru, 129 pp.

    Google Scholar 

  54. Leon, J. 1964. The “maca” (Lepidium meyenii), a little-known food plant from Peru. Econ. Bot. 18:122–127.

    Article  Google Scholar 

  55. Chacon, R.C. 1961. Estudio fitoquimico de Lepidium meyenii. Dissertation, Univ. Nac. Mayor de San Marcos, Peru.

    Google Scholar 

  56. Stirpe, F., Barbieri, L., Batelli, M.G., Soria, M., Lappi, D.A. 1992. Ribosome inactivating proteins from plants: present status and future prospects. Bio/Technol. 10:405–412.

    Article  CAS  Google Scholar 

  57. Zarling, J.M., Moran, P.A., Haffar, O.J., Sias, D., Richman, D., Spina, C.A., Myers, D.E., Kuelbelbeck, V., Ledbetter, J.A., Uckun, F.M. 1990. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4 cells by monoclonal antibodies. Nature 347:92–95.

    Article  PubMed  CAS  Google Scholar 

  58. Vivanco, J.M.I 1995. Efecto inhibitorio de los extractos de Mirabilis jalapa en contra de PVX, PVY y PSTVd. Tesis, Facultad de Agronomia-Universidad Nacional Agraria La Molina, Lima, Peru.

    Google Scholar 

  59. Kubo, S., Ikeda, T., Imaizumi, S., TAKANAMI, Y, MIKAMI, Y 1990. A potent plant virus inhibitor foun in Mirabilis jalapa L. Ann. Phytopath. Soc. Japan 56:481–487.

    Article  Google Scholar 

  60. Savary, B.J., Fores, H.E. 1994. Production of bioactive proteins in transformed root cultures of Triehosanthes kirilowii and related species. Plant Physiol. 106:1195–1204.

    Article  PubMed  CAS  Google Scholar 

  61. Savary, B.J., Flores, H.E. 1997. Characterization of extracellular chitinases produced by root cultures of Triehosanthes kirilowii. Plant Physiol. Biochem. (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flores, H.E., Flores, T. (1997). Biology and Biochemistry of Underground Plant Storage Organs. In: Johns, T., Romeo, J.T. (eds) Functionality of Food Phytochemicals. Recent Advances in Phytochemistry, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5919-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5919-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7714-6

  • Online ISBN: 978-1-4615-5919-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics