Skip to main content

Quantitative Microscopic Approaches to Carbohydrate Characterization and Distribution in Cereal Grains

  • Chapter
Functionality of Food Phytochemicals

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 31))

Abstract

Development and utilization of improved cereal varieties for domestic and international use depends upon the ability of both breeders and processors to: (a) identify potential sources of new or improved traits; (b) incorporate these traits into agronomically acceptable cultivars; and (c) exploit these characteristics in improving traditional products or developing new ones. To do so the breeder must identify and measure desirable traits in a large number of potential cultivars in a relatively rapid and simple manner, and the processor must have access to rapid and precise methods for defining grain “quality”, the combination of chemical and structural attributes which defines the utility of grains in processing conditions. In most major cereals, including wheat, rice, barley, oats, maize, and sorghum, our ability to identify and characterize these traits in phytochemical terms is quite variable depending on the history of the crop, but in all cases it is rudimentary and somewhat empirical. This is not surprising in view of the large number of molecular species which interact to contribute to the overall biochemistry of the grains. Consequently, the most important tool for identifying new cereal varieties is pilot or micro-scale processing, (e.g. pilot milling, malting, baking or extrusion) in which relatively large numbers of samples can be analyzed for their suitability for use in food systems. Although the majority of the storage reserves in cereal grains are polysaccharides (e.g. starch, pentosans, β-glucans) or carbohydrate-linked complexes (e.g. phenolic glycosides, lignin), with few exceptions (e.g., β-glucan determination1) individual chemical traits are either too costly or cumbersome to measure routinely in large numbers, or are ill-defined and inappropriate for daily use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCleary, B.V., Glennie-Holmes, M. 1985. Enzymic quantification of (l,3)(l,4)-βD-glucan in barley and malt. J. Inst Brew. 91:285–295.

    Google Scholar 

  2. Fulcher, R.G. 1986. Morphological and chemical organization of the oat kernel. In: Oats: Chemistry and Technology. (F.H. Webster, ed.), American Association of Cereal Chemists, Inc. Minnesota, pp. 47–74.

    Google Scholar 

  3. Haberlandt, G. 1890. Die Kleberschicht des Gras-Endosperm s als Diastase ausscheidendes Drusengewebe. Bei Deutch Bot. Ges. 8:40–48.

    Google Scholar 

  4. Fulcher, R.G., Miller, S.S. 1993. Structure of oat bran and distribution of dietay fiber components. In: Oat Bran. (P.J. Wood, ed.), American Association of Cereal Chemists, St. Paul, MN. pp. 1–24.

    Google Scholar 

  5. Fulcher, R.G., O’Brien, T.P., Lee, J.W. 1972. Studies on the aleurone layer. 1. Conventional and fluorescence microscopy of the cell wall with emphasis on phenol-carbohydrate complexes in wheat. Aust. J. Biol. Sci. 25:23–34.

    CAS  Google Scholar 

  6. Fincher, G.B. 1975. Morphology and chemical composition of barley endosperm cell walls. J. Inst. Brew. 81:116–122.

    CAS  Google Scholar 

  7. Pussayanawin, V. 1986. High Performance Liquid Chromatographic Studies of Ferulic Acid in Flour Milling Fractions. Ph.D. Dissertation. Kansas State University. 274 pp.

    Google Scholar 

  8. Sen, A., Bergvinson, D., Miller, S.S., Atkinson, J., Fulcher, R.G., Arnason, J.T. 1994. Distribution and microchemcial detection of phenolic acids, flavonoids and phenolic acid amides in maize kernels. J. Agric. Food Chem. 42:1879–1883.

    Article  CAS  Google Scholar 

  9. Arnason, J.T., Gale, J., De Beyssac, C., Sen, A., Miller, S.S., Philogen, B.J.R., Lambert, J.D.H., Fulcher, R.G., Serratos, A., Mihm, J. 1992. Role of phenolics in resistance of maize grain to the stored products insects Sitophilus zeamais and Prostephanus trncatus. J. Stored Prod. 28:229–236.

    Google Scholar 

  10. Reid, L.M., Mather, D.E., Arnason, J.T., Hamilton, R.I., Bolton, A.T. 1992. Changes in phenolic constituents of maize silk infected with Fusarium graminearum. Can.J.Bot. 70:1697–1702.

    Article  CAS  Google Scholar 

  11. Freeman, P.L., Palmer, G.H. 1984. The structure of the pericarp and testa of barley. J. Inst. Brew. 90:88–94.

    Google Scholar 

  12. Fulcher, R.G., Deneka, T., Miller, S.S. 1992. Structure/function relationships in barley quality: Analysis by microscopy and quantitative imaging. In: Proc. Sixth International Barley Genetics Symposium, (L. Munck ed.), Helsingborg, Sweden, pp. 711–724.

    Google Scholar 

  13. Wasiluk, K.R., Fulcher, R.G., Jones, R.J., Gengenbach, B.G. 1994. Characterization of starch granules in maize using microspectrophotometry. Starch 46(10): 369–373.

    Article  CAS  Google Scholar 

  14. Pedersen, L.H. 1987. Development of Screening Methods for Evaluation of Starch Structure and Synthesis in Barley. Ph.D. Thesis, Chemistry Dept., Royal Veterinary and Agricultural University, Copenhagen, Denmark. 171 pp.

    Google Scholar 

  15. Bechtel, D.B., Zayas, I., Kaleikau, L., Pomeranz, Y. 1990. Size distribution of wheat starch granules during endosperm development. Cereal Chem. 67(1): 59–63.

    Google Scholar 

  16. Hoseney, R.C., Faubion, J.M. 1981. A mechanism for the oxidative gelation of wheat flour solubel pentosans. Cereal Chem. 58(5): 421–428.

    CAS  Google Scholar 

  17. Miller, S.S., Fulcher, R.G., Sen, A., Arnason, J.T. 1995. Oat endosperm cell walls: I. Isolation, composition, and comparison with other tissues. Cereal Chemsitry 72(5): 421–27.

    CAS  Google Scholar 

  18. Fincher, G.B. 1976. Ferulic acid in barley cell walls: A fluorescence study. J. Inst. Brew. 82:3347–349.

    Google Scholar 

  19. Fincher, G.B., Stone, B.A. 1986. Cell walls and their components in cereal grain technology. In: Advances in Cereal Science and Technology, Vol 8. (Y. Pomeranz, ed.), AmericanAssociation of Cereal Chemists, St. Paul, MN. pp. 207–295.

    Google Scholar 

  20. Vinkx, C.J.A., Delcour, J.A. 1996. Rye (Secale cereale L.) arabinoxylans: A critical review. J. Cereal Sci. 24(1): 1–14.

    Article  CAS  Google Scholar 

  21. Fulcher, R.G., Irving, D.W., De Francisco, A. 1989. Fluorescence microscopy: Applications in food analysis. In: Fluorescence Analysis in Foods. (L. Munck, ed.) Longman Scientific and Technical, UK. pp. 59–109.

    Google Scholar 

  22. Jorgensen, K.G. 1988. Quantification of high molecular weight (l,3)(l,4)-β-D-glucan using Calcofluor complex formation and flow injection analysis. I. Analytical principle and its standardization. Carlsberg Res. Commun. 53:277–285.

    Article  Google Scholar 

  23. Jorgensen, K.G., Aastrup, S. 1988. Quantification of high molecular weight (1,3)(1,4)β-D-glucan using Calcofluor complex formation and flow injection analysis. II. Determination mof total beta-glucan content of barley and malt. Carlsberg Res. Commun. 53:287–296.

    Article  Google Scholar 

  24. Fulcher, R.G., Setterfield, G., McCully, M.E., Wood, P.J. 1977. Observations on the aleurone layer. II. Fluorescence microscopy of the aleurone/subaleurone junction with emphasis on possible β-(l,3)-glucan deposits in barley. Aust. J. Plant Physiol. 4:917–928.

    Article  CAS  Google Scholar 

  25. Bacic, A., Stone, B.A. 1981. Isolation and ultrastructure of aleurone cell walls from wheat and barley. Aust. J. Plant Physiol. 8:453–474.

    Article  Google Scholar 

  26. Macgregor, A.W., Ballance, G.M., Dushnicky, L. 1989. Fluorescence microscopy studies on (l,3)-β-D-glucan in barley endosperm. Fd. Microstructure 8:235–244.

    CAS  Google Scholar 

  27. Piller, H. 1977. Microscope Photometry. Springer Verlag, 253 pp.

    Google Scholar 

  28. Dhillon, S.S., Miksche, J.P., Cecich, R.A. 1983. Microspectrometric applications in plant science research. In: New Frontiers in Food Microstructure. American Association of Cereal Chemists, (D.B. Bechtel, ed.), St. Paul, MN, pp. 27–74.

    Google Scholar 

  29. Haugland R.P. 1994. Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes Inc., Eugene, OR, 420 pp.

    Google Scholar 

  30. De Francisco, A. 1989. Fluorochromes: wavelengths, recipes and applications. Appendix In: Fluorescence Analysis in Foods. (L. Munck, ed.), Longman Scientific and Technical, UK, pp. 268–282.

    Google Scholar 

  31. Munck, L. (Ed). 1989. Fluorescence Analysis in Foods. Longman Scientific and Technical, UK, 289 pp.

    Google Scholar 

  32. Pedersen, B., Martens, H. 1989. Multivariate calibration of fluorescence data. In: Fluorescence Analysis in Foods. (L. Munck, ed.), Longman Scientific and Technical, UK, pp. 215–267.

    Google Scholar 

  33. Fulcher, R.G., Collingwood, K. 1987. Quantitative microscopy in barley research. Proc. Australian Barley Technical Symposium, (M. Glennie-Holmes, H. Taylor, ed.), NSW Dept. of Agriculture, Wagga Wagga, NSW. pp. 222–228.

    Google Scholar 

  34. Irving, D.W., Fulcher, R.G., Bean, M.M., Saunders, R.M. 1989. Differentiation of wheat based on fluorescence, hardness, and protein. Cereal Chem. 66(6): 471–477.

    Google Scholar 

  35. Symons, S.J. Dexter, J.E. 1993. Relationship of flour aleurone fluorescence to flour refinement for some Canadian hard common wheat classes. Cereal Chem. 70:90–95.

    CAS  Google Scholar 

  36. Rooney, M.K., Fulcher, R.G. 1992. Differentiation of insoluble fibers and fiber mixtures using high resolution scanning absorption microspectrophotometry. J. Food Sci. 57(5): 1246–47, 1257.

    Article  CAS  Google Scholar 

  37. Wood, P.J., Anderson, J.W., Braaten, J.T., Cave, N.A., Scott, F.W., Vachon, C. 1989. Physiological effects of β-D-glucan rich fractions from oats. Cereal Foods World 34:878–882.

    CAS  Google Scholar 

  38. Wood, P.J., Braaten, J.T., Scott, F.T., Riedel, D., Poste, L.M. 1990. Comparison of viscous properties of oat and guar gum and the effects of these and oat bran on glycemie index. J. Agric. Food Chem. 38:753–757.

    Article  CAS  Google Scholar 

  39. Davidson, M.H., Dugan, L.D., Burns, J.H., Bova, J., Story, K., Drennan, K.B. 1991. The hypocholesterolemic effects of β-glucan in oat meal and bran. A dose controlled study. JAMA 265:1833–1839.

    CAS  Google Scholar 

  40. Miller, S.S., Fulcher, R.G. 1995. Oat endosperm cell walls: II Hot-water solubilization and enzymatic digestion of the wall. Cereal Chem. 72(5): 428–432.

    CAS  Google Scholar 

  41. Miller, S.S., Fulcher, R.G. 1994. Distribution of (l,3)(l,4)-β-D-glucans in kernels of oats and barley using microspectrophotometry. Cereal Chem. 71(1): 64–68.

    CAS  Google Scholar 

  42. Ruan, R., Ning, A., Brusewitz, G.H. 1989. Imaging processing techniques for food engineering applications. American Society of Agricultural Engineers. Paper No. 896614.

    Google Scholar 

  43. Symons, S.J., Fulcher, R.G. 1988. Determination of wheat kernel morphological variation by digital image analysis. I. Variation in Eastern Canadian milling quality wheats. J. Cereal Sci. 8:211–218.

    Article  Google Scholar 

  44. Symons, S.J., Fulcher, R.G. 1988. Determination of wheat kernel morphological variation by digital image analysis: II. Variation in cultivars of soft white winter wheats. J. Cereal Sci. 8:219–229.

    Article  Google Scholar 

  45. Keefe, P.D. 1990. Observations concerning shape variations in wheat grains. Seed Sci. and Technol. 18:629–640.

    Google Scholar 

  46. Zayas, I., Pomeranz, Y, Lai, R.S. 1985. Discrimination between Arthur and Arkan wheats by image analysis. Cereal Chem. 62:478–480.

    Google Scholar 

  47. Pietrzak, L.N., Fulcher, R.G. 1995. Polymorphism of oat kernel size and shape in several Canadian oat cultivars. Can. J. Plant Sci. 75:105–109.

    Article  Google Scholar 

  48. Fulcher, R.G., Faubion, J.M., Ruan, R., Miller, S.S. 1994. Quantitative microscopy in carbohydrate analysis. Carbohydrate Polymers 25:285–293.

    Article  CAS  Google Scholar 

  49. Oliveira, A.B., Rasmusson, D.C., Fulcher, R.G. 1994. Genetic aspects of starch granule traits in barley. Crop Sci. 34:1176–1180.

    Article  Google Scholar 

  50. Haberer, K.M. 1994. Evaluation of Starch Quality in Relation to Mixing Characteristics of Minnesota Grown Wheat Varieties. M.S. Thesis. University of Minnesota. 159 pp.

    Google Scholar 

  51. Lauterbur, P.C. 1973. Image formation by induced local interactions: examples employing NMR. Nature 242:190–191.

    Article  CAS  Google Scholar 

  52. Mcentyre, E. 1995. Evaluation of the Physical Properties of Barley in Relation to Hydration. M.S. Thesis. University of Minnesota. 145 pp.

    Google Scholar 

  53. Ruan, R., Litchfield, J.B. 1992. Determination of water distribution and mobility inside corn kernels during steeping using magnetic resonance microscopy. Cereal Chem. 69(1): 13–17.

    Google Scholar 

  54. Mansfield, P., Maudsley, A.A. 1976. Planar spin imagin by NMR. J. Phys. C9:L409–411.

    Google Scholar 

  55. Mccarthy, M.J., Kauten, R. 1990. Magnetic resonance imaging applications in food research. Trends in Food Sci. and Technol. Dec. 143.

    Google Scholar 

  56. Chen, P., Mccarthy, M.J., Kauten, R. 1989. NMR for internal quality evaluation of fruits and vegetables. Trans, of ASAE 32(5): 1747–1753.

    Google Scholar 

  57. Eccles, C.D., Challaghan, C.F., Jenner, C.F. 1988. Measurement of the self-diffusion coefficient of water as a function of position in wheat using nuclear magnetic resonance imaging. Biophys. J. 53(1): 77–81.

    Article  PubMed  CAS  Google Scholar 

  58. Zeng, X.S. 1994. Study of Soybean Seedcoat Cracking During Drying Using Magnetic Resonance Imaging. M.S. Thesis. University of Minnesota. 106 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fulcher, R.G., Miller, S.S., Ruan, R.R. (1997). Quantitative Microscopic Approaches to Carbohydrate Characterization and Distribution in Cereal Grains. In: Johns, T., Romeo, J.T. (eds) Functionality of Food Phytochemicals. Recent Advances in Phytochemistry, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5919-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5919-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7714-6

  • Online ISBN: 978-1-4615-5919-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics