Skip to main content

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

This theme — of the link between data needs and scientific progress — describes well the development of computational atomic physics, which is profiting from a systematic programme of research to provide the data required by applications as diverse as astrophysics and laboratory plasma technology. In particular, outstanding progress has been made by two international projects: the recently-completed Opacity Project (OP)1–27 and the current IRON Project (IP)28–48.

Science profits from a two-objective aim. One thing is to push back frontiers, understand better the universe, its contents and its framework of law. Objective two is to expand quantitatively the base of science: to claim new predictions, accurate data standards and better models. These bring high rewards these days; and in many applications, data pays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Seaton, Atomic data for opacity calculations: I. General description, J. Phys. B: At. Mol. Phys. 20: 6363 (1987).

    Article  ADS  Google Scholar 

  2. K.A. Berrington, P.G. Burke, K. Butler, M.J. Seaton, P.J. Storey, K.T. Taylor and Yu Yan, Atomic data for opacity calculations: II. Computational methods, J. Phys. B: At. Mol. Phys. 20: 6379 (1987).

    Article  ADS  Google Scholar 

  3. Yu Yan, K.T. Taylor and M.J. Seaton, Atomic data for opacity calculations: III. Oscillator strengths for CII, J. Phys. B: At. Mol. Phys. 20: 6399 (1987).

    Article  ADS  Google Scholar 

  4. Yu Yan and M.J. Seaton, Atomic data for opacity calculations: IV. Photoionization cross sections for CII, J. Phys. B: At. Mol. Phys. 20: 6409 (1987).

    Article  ADS  Google Scholar 

  5. M.J. Seaton, Atomic data for opacity calculations: V. Electron impact broadening of some CIII lines, J. Phys. B: At. Mol. Phys. 20: 6431 (1987).

    Article  ADS  Google Scholar 

  6. J.F. Thornbury and A. Hibbert, Atomic data for opacity calculations: VI. Static dipole polarisabilities of the ground state of the helium sequence, J. Phys. B: At. Mol. Phys. 20: 6447 (1987).

    Article  ADS  Google Scholar 

  7. J.A. Fernley, K.T. Taylor and M.J. Seaton, Atomic data for opacity calculations: VII. Energy levels, f values and photoionization cross sections for He-like ions, J. Phys. B: At. Mol. Phys. 20: 6457 (1987).

    Article  ADS  Google Scholar 

  8. M.J. Seaton, Atomic data for opacity calculations: VIII. Line-profile parameters for 42 transitions in Li-like and Be-like ions, J. Phys. B 21: 3033 (1988).

    Article  ADS  Google Scholar 

  9. G. Peach, H.E. Saraph and M.J. Seaton, Atomic data for opacity calculations: IX. The lithium isoelectronic sequence, J. Phys. B: At. Mol. Opt. Phys. 21: 3669 (1988).

    Article  ADS  Google Scholar 

  10. D. Luo, A.K. Pradhan, H.E. Saraph, P.J. Storey and Yu Yan, Atomic data for opacity calculations: X. Oscillator strengths and photoionization cross sections for OIII, J. Phys. B: At. Mol. Opt. Phys. 22: 389 (1989).

    Article  ADS  Google Scholar 

  11. D. Luo and A.K. Pradhan, Atomic data for opacity calculations: XI. The carbon isoelectronic sequence, J. Phys. B: At. Mol. Opt. Phys. 22: 3377 (1989).

    Article  ADS  Google Scholar 

  12. M.J. Seaton, Atomic data for opacity calculations: XII. Line-profile parameters for neutral atoms of He, C, N and O, J. Phys. B 22: 3603 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  13. M.J. Seaton, Atomic data for opacity calculations: XIII. Line profiles for transitions in hydrogenic ions, J. Phys. B: At. Mol. Opt. Phys. 23: 3255 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  14. J.A. Tully, M.J. Seaton and K.A. Berrington, Atomic data for opacity calculations: XIV. The beryllium sequence, J. Phys. B: At. Mol. Opt. Phys. 23: 3811 (1990).

    Article  ADS  Google Scholar 

  15. P.M.J. Sawey and K.A. Berrington, Atomic data for opacity calculations: XV. FeI-IV J. Phys. B: At. Mol. Opt. Phys. 25: 1451 (1992).

    Article  ADS  Google Scholar 

  16. H.E. Saraph, P.J. Storey and K.T. Taylor, Atomic data for opacity calculations: XVI. Ab initio calculations for FeVIII and FeVII, J. Phys. B 25: 4409 (1992).

    Article  ADS  Google Scholar 

  17. V.M. Burke, Atomic data for opacity calculations: XVII. Calculation of line broadening parameters and collision strengths between n=2, 3 and 4 states in CIV, J. Phys. B: At. Mol. Opt. Phys. 25: 4917 (1992).

    Article  ADS  Google Scholar 

  18. S.N. Nahar and A.K. Pradhan, Atomic data for opacity calculations: XVIII. Photoionization and oscillator strengths of Si-like ions Si0, S2+, Ar4+, Ca6+, J. Phys. B: At. Mol. Opt. Phys. 26: 1109 (1993).

    Article  ADS  Google Scholar 

  19. K. Butler, C. Mendoza and C.J. Zeippen, Atomic data for opacity calculations: XIX. The magnesium isoelectronic sequence, J. Phys. B: At. Mol. Opt. Phys. 26: 4409 (1993).

    Article  ADS  Google Scholar 

  20. S.N. Nahar and A.K. Pradhan, Atomic data for opacity calculations: XX. Photoionization cross sections and oscillator strengths for FeII, J. Phys. B 27: 429 (1994).

    Article  ADS  Google Scholar 

  21. A. Hibbert and M.P. Scott, Atomic data for opacity calculations: XXI. The neon sequence, J. Phys. B: At. Mol. Opt. Phys. 27: 1315 (1994).

    Article  ADS  Google Scholar 

  22. A.E. Lynas-Gray, M.J. Seaton and P.J. Storey, Atomic data for opacity calculations: XXII. Computations for 2 472 790 multiplet gf values in FeVIII to FeXIII, J. Phys. B: At. Mol. Opt. Phys. 28: 2817 (1995).

    Article  ADS  Google Scholar 

  23. M.J. Seaton, Yu Yan, D. Mihalas and A.K. Pradhan, Opacities for stellar envelopes, Mon. Not. R. Astron. Soc. 266:805 (1994).

    ADS  Google Scholar 

  24. M.J. Seaton, C.J. Zeippen, J.A. Tully, A.K. Pradhan, C. Mendoza, A. Hibbert and K.A. Berrington, The Opacity Project — computation of atomic data, Rev. Mex. Astron. Astrof. 23:19 (1992). A.Lynas-Gray, C.Mendoza, and C.J.Zeippen (eds), Proc. Workshop on astrophysical opacities, IBM Venezuela Scientific Center, Caracas 15–19 July 1991, Rev. Mex. Astron. Astrof. Vol 23 (1992).

    ADS  Google Scholar 

  25. The Opacity Project Team, The Opacity Project Vol 1, Institute of Physics Publishing, Bristol and Philadelphia (1995).

    Google Scholar 

  26. The Opacity Project Team, The Opacity Project Vol 2, Institute of Physics Publishing, Bristol and Philadelphia (1996).

    Google Scholar 

  27. W. Cunto, C. Mendoza, F. Ochsenbein and C.J. Zeippen, TOPBASE, A&A 275: L5 (1993).

    ADS  Google Scholar 

  28. D.G. Hummer, K.A. Berrington, W. Eissner, Anil K. Pradhan, H.E. Saraph, J.A. Tully, Atomic data from the IRON Project: I. Goals and methods, A&A 279: 298 (1993).

    ADS  Google Scholar 

  29. D.J. Lennon, V.M. Burke, Atomic data from the IRON Project: II. Effective collision strengths for infrared transitions in carbon-like ions, A&A Suppl. Ser. 103: 273 (1994).

    ADS  Google Scholar 

  30. H.L. Zhang, M. Graziani and A.K. Pradhan, Atomic data from the IRON Project: III. Rate coefficients for electron impact excitation of Boron-like ions: Na VI, Mg VIII, Al IX, Si X, S X, Ar XIV, Ca XVI and Fe XXII, A&A 283: 319 (1994).

    ADS  Google Scholar 

  31. H.E. Saraph, J.A. Tully, Atomic data from the IRON Project: IV. Electron excitation of the 2 P(3/2) — 2 P(1/2) fine structure transition in fluorine-like ions, A&A Suppl. Ser. 107: 29 (1994).

    ADS  Google Scholar 

  32. K. Butler, C.J. Zeippen, Atomic data from the IRON Project: V. Effective collision strengths for transitions in the ground configuration of oxygen-like ions, A&A Suppl. Ser. 108: 1 (1994).

    ADS  Google Scholar 

  33. H.L. Zhang and A.K. Pradhan, Atomic data from the IRON Project: VI. Collision strengths and rate coefficients for FeII, A&A 293: 953 (1995).

    ADS  Google Scholar 

  34. Sultana N. Nahar, Atomic data from the IRON Project: VII. Radiative transition probabilities for FeII, A&A 293: 967 (1995).

    ADS  Google Scholar 

  35. K.A. Berrington, Atomic data from the IRON Project: VIII. Electron excitation of the 3d 4 5 D J ground state fine structure transition in Ti-like ions VII, CrIII, MnIV, FeV, CoVI and NiVII, A&A Suppl. Ser. 109: 193 (1995).

    ADS  Google Scholar 

  36. J.C. Pelan and K.A. Berrington, Atomic data from the IRON Project: IX. Electron excitation of the 2 P 3/2–1/2 fine structure transitions in chlorine-like ions from ArII to NiXII, A&A Suppl. Ser. 110: 209 (1995).

    ADS  Google Scholar 

  37. M.E. Galavis, C. Mendoza and C.J. Zeippen, Atomic data from the IRON Project: X. Effective collision strengths for infrared transitions in silicon- and sulphur-like ions, A&A Suppl. Ser. 111: 347 (1995).

    ADS  Google Scholar 

  38. H.E. Saraph and P.J. Storey, Atomic data from the IRON Project: XL The 2 P 1/2–3/2 fine-structure lines of ArVI, KVII and CaVIII, A&A Suppl. Ser. 115: 151 (1996).

    ADS  Google Scholar 

  39. K.A. Berrington and J.C. Pelan, Atomic data from the IRON Project: XII. Electron excitation of forbidden transitions in V-like ions MnIII, FeIV, CoV, and NiVI, A&A Suppl. Ser. 114: 367 (1995).

    ADS  Google Scholar 

  40. M.A. Bautista and A.K. Pradhan, Atomic data from the IRON Project: XIII. Electron excitation rates and emissivity ratios for forbidden transitions in NiII and FeII, A&A Suppl. Ser. 115: 551 (1996).

    ADS  Google Scholar 

  41. P.J. Storey, H.E. Mason, and H.E. Saraph, Atomic data from the IRON Project: XIV. Electron impact excitation for the FeXIV fine-structure transition 2 P 0 1/22 P 0 3/2, A&A 309: 667 (1996).

    Google Scholar 

  42. R. Kisielius, K.A. Berrington, and P.H. Norrington, Atomic data from the IRON Project: XV. Electron excitation of the fine-structure transitions in hydrogen-like ions HeII and FeXXVI, A &A Suppl Ser. 118: 157 (1996).

    ADS  Google Scholar 

  43. Manuel A. Bautista, Atomic data from the IRON Project: XVI. Photoionization cross sections and oscillator strengths for FeV, A&A Suppl. Ser. 119: 105 (1996).

    Article  ADS  Google Scholar 

  44. S.N. Nahar and A.K. Pradhan, Atomic data from the IRON Project: XVII. Radiative transition probabilities for dipole allowed and forbidden transitions in FeIII, A&A Suppl. Ser. 119: 507 (1996).

    ADS  Google Scholar 

  45. Hong Lin Zhang, Atomic data from the IRON Project: XVIII. Electron impact excitation collision strengths and rate coefficients for FeIII, A&A Suppl. Ser. 119: 523 (1996).

    Article  ADS  Google Scholar 

  46. P. Quinet, M. Le Dourneuf, C.J. Zeippen, Atomic data from the IRON Project: XIX. Radiative transition probabilities for forbidden lines in FeII, A&A Suppl. Ser. (1996).

    Google Scholar 

  47. Manuel A. Bautista, Atomic data from the IRON Project: XX. Photoionization cross sections and oscillator strengths for FeI, A&A Suppl. Ser. (in press 1996).

    Google Scholar 

  48. J. Pelan and K.A. Berrington, Atomic data from the IRON Project: XXI. Electron excitation of fine-structure transitions involving the 3d 64s 2 5 D ground state and the 3d 74s 5 F metastable state of FeI, A&A Suppl. Ser. (in press 1996).

    Google Scholar 

  49. P.G. Burke and K.A. Berrington, Atomic And Molecular Processes: An R-matrix Approach, Institute of Physics Publishing, Bristol and Philadelphia (1993).

    Google Scholar 

  50. K.A. Berrington, W.B. Eissner and P.H. Norrington, RMATRX I, Belfast atomic R-matrix codes, Comput. Phys. Commun. 92: 290 (1995).

    Article  ADS  Google Scholar 

  51. I. Bray and D.V. Fursa, Convergent close-coupling method: a “complete scattering theory”? Phys. Rev. Lett. 76:2674 (1996).

    Article  ADS  Google Scholar 

  52. K. Bartschat, E.T. Hudson, M.P. Scott, P.G. Burke and V.M. Burke, Electron-atom scattering at low and intermediate energies using a pseudo-state/R-matrix basis, J. Phys. B 29:115 (1996).

    Article  ADS  Google Scholar 

  53. K. Bartschat, E.T. Hudson, M.P. Scott, P.G. Burke and V.M. Burke Convergent R-matrix with pseudo-states calculation for e-He collisions, Phys. Rev. A 54:R998 (1996).

    Article  ADS  Google Scholar 

  54. S. Rosseland, Roy. Astron. Soc. M. N. 84:525 (1924).

    ADS  Google Scholar 

  55. C. Iglesias, F.J. Rogers and B.G. Wilson, Reexamination of the metal contribution to astrophysical opacity, Astrophys. J. 322:L45 (1987).

    Article  ADS  Google Scholar 

  56. J. Lang (ed.), Proc. Atomic data workshop for SOHO, Atom. Data Nucl. Data Tables, 57 (1994).

    Google Scholar 

  57. L. Quigley and K.A. Berrington, The QB method: analysing resonances using R-matrix theory. Applications to C+, He and Li, J. Phys. B 29:4529 (1996).

    Article  ADS  Google Scholar 

  58. J.B. West and G.V. Marr, The absolute photoionization cross sections of helium, neon, argon and krypton in the extreme vacuum ultraviolet region of the spectrum, Proc. R. Soc. Lond. A 349:397.

    Google Scholar 

  59. A.M. Cantú, M. Mazzoni, M. Pettini and G.P. Tozzi, Photoionization spectrum of the 3 P ground state of neutral carbon, Phys. Rev. A 23:1223 (1981).

    Article  ADS  Google Scholar 

  60. J.A.R. Samson and G.C. Angel, Single- and double-photoionization cross sections of atomic nitrogen from threshold to 31A, Phys. Rev. A 42:1307 (1990).

    Article  ADS  Google Scholar 

  61. G.C. Angel and J.A.R. Samson, Total photoionization cross sections of atomic oxygen from threshold to 44.3A, Phys. Rev. A 38:5578 (1988).

    Article  ADS  Google Scholar 

  62. R.D. Hudson and V.L. Carter, Atomic absorption cross sections of lithium and sodium between 600 and 1000A, J.Opt.Soc.Am. 57:651 (1967).

    Article  ADS  Google Scholar 

  63. D.J. Bradley, C.H. Dugan, P. Ewart and A.F. Purdie, Absolute photoionization cross-section measurement of selectively excited magnesium, Phys. Rev. A 13:1416 (1976).

    Article  ADS  Google Scholar 

  64. J.L. Kohl and W.H. Parkinson, Measurement of the neutral-aluminum photoionization cross-section and parameters of the 3p 2 P° – 3s3p 2 2 S 1/2 autoionization doublet, Astrophys. J. 184:641 (1973).

    Article  ADS  Google Scholar 

  65. R.A. Roig, The photoionization spectrum of neutral aluminium, All, J. Phys. B: At. Mol. Phys. 8:2939 (1975).

    Article  ADS  Google Scholar 

  66. R.E. Bonanno, C.W. Clark and T.B. Lucatorto, Multiphoton excitation of autoionizing states of Mg: line-shape studies of the 3p 2 1 S state, Phys. Rev. A 34:2082 (1986).

    Article  ADS  Google Scholar 

  67. VoKy L, H.E. Saraph, W. Eissner, Z.W. Liu and H.P. Kelly, Inner-shell photoionization of beryllium, Phys. Rev. A 46:3945 (1992).

    Article  ADS  Google Scholar 

  68. H.L. Zhang, Relativistic calculations for high energy photoionization cross sections, in preparation (1996).

    Google Scholar 

  69. K.A. Berrington, J. Pelan and L. Quigley, The calculation of atomic properties: resonances, f-values, photoionization and inner-shell processes, in preparation (1996).

    Google Scholar 

  70. K.A. Berrington, L. Quigley and H.L. Zhang, High energy photoionization cross sections for the Be-sequence, inpreparation (1996).

    Google Scholar 

  71. C.W. Clark, J.D. Fassett, T.B. Lucatorto, L.J. Moore and W.W. Smith, Observation of autoionizing states of beryllium by resonance-ionization mass spectrometry, J. Opt. Soc. Am. B 2:891 (1985).

    Article  ADS  Google Scholar 

  72. N. Miura, Y. Osanai, T. Noro and F. Sasaki, Theoretical determination of energies and widths of autoionizing states of the Be atom, J. Phys. B 29:2689 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berrington, K.A. (1997). The Opacity and Iron Projects — An Overview. In: Burke, P.G., Joachain, C.J. (eds) Photon and Electron Collisions with Atoms and Molecules. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5917-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5917-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7713-9

  • Online ISBN: 978-1-4615-5917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics