Skip to main content

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Progress in femtosecond laser technology1 has made a strong impact on the field of laser-plasma interaction. With the development of chirped pulse amplification2 and new broadband solid state laser materials, femtosecond laser pulses with peak power in the terawatt range and focused intensities greater than 1018W/cm2 can be generated with relatively small-scale, table-top laser systems. The electric field strengths corresponding to these intensities are comparable with the Coulomb field in atoms. During the interaction with such an intense laser pulse atomic, molecular or any condensed form of matter is very rapidly ionized and turned into a plasma. Thus the physics of laser-plasma interaction is of fundamental importance for a broad class of applications of intense femtosecond laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Mourou and D. Umstadter, Development and application of compact high intensity lasers, Phys. Fluids B 4: 2315 (1992).

    Article  ADS  Google Scholar 

  2. P. Marine, D. Strickland, P. Bado, M. Pessot and G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quant. Electr. QE-24:398 (1988).

    ADS  Google Scholar 

  3. See, e.g., High-Field Interaction and Short-Wavelength Generation, Feature Issue, J. Opt. Soc. Am. B 13: 51 (1996).

    Google Scholar 

  4. W. L. Smith, Laser-induced breakdown in optical materials, Opt. Eng. 17, 489 (1978).

    Article  Google Scholar 

  5. N. Bloembergen, Laser-induced electrical breakdown in solids, IEEE J. Quant. Electr. QE-10, 375 (1974).

    Article  ADS  Google Scholar 

  6. S. C. Jones, P. Bräunlich, R. Th. Casper, And X. A. Shen, Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials, Opt. Eng. 28, 1139 (1989).

    Article  Google Scholar 

  7. M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Laser-induced damage and the role of self-focusing, Opt. Eng. 28, 1133 (1989).

    Article  ADS  Google Scholar 

  8. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs, Appl. Phys. Lett. 64: 3071 (1994).

    Article  ADS  Google Scholar 

  9. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses, Phys. Rev. Lett. 74: 2248 (1995).

    Article  ADS  Google Scholar 

  10. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Optical ablation by high-power short-pulse lasers, J. Opt. Soc. Am. B 13: 459 (1996).

    Article  ADS  Google Scholar 

  11. D. von der Linde and H. Schüler, Breakdown threshold and plasma formation in femtosecond laser-solid interaction, J. Opt. Soc. Am. B 13: 216 (1996).

    Article  ADS  Google Scholar 

  12. J. M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett. 7: 196(1977).

    Google Scholar 

  13. N. Bloembergen, Appl. Optics 12: 661 (1973).

    Article  ADS  Google Scholar 

  14. D. von der Linde, Second harmonic production from solid targets, in: Laser Interactions with Atoms, Solids, and Plasmas, R. M. More, ed., Plenum Publ. Corpor., New York, (1994) p. 207.

    Google Scholar 

  15. See, for example, W. L. Kruer, The Physics of Laser Plasma Interaction, Addison-Wesley, Redwood City (1988).

    Google Scholar 

  16. D. von der Linde, H. Schulz, T. Engers, and H. Schüler, Second harmonic generation in plasmas produced by intense femtosecond laser pulses, IEEE J. Quant. Electr. QE-28: 2388 (1992).

    Article  ADS  Google Scholar 

  17. See, e.g., P. Mulser, Resonance absorption and ponderomotive action, in: Physics of Laser Plasmas, A. Rubenchik and S. Witkowski, eds., North-Holland, Amsterdam (1991), p. 435.

    Google Scholar 

  18. J. Albritton and P. Koch, Cold plasma wavebreaking: Production of energetic electrons, Phys. Fluids 18:1136 (1975).

    Article  ADS  Google Scholar 

  19. S. C. Rae and K. Burnett, Reflectivity of steep gradient plasmas in intense subpicosecond laser pulses, Phys. Rev. A 44: 3835 (1991).

    Article  ADS  Google Scholar 

  20. P. Audebert, F. Falliès, J. P. Geindre, J. Delettrez, A. Rousse, and J. C. Gauthier, Subpicosecond laser-produced plasma dynamics, SPIE Proceedings 2015: 205 (1993).

    Article  ADS  Google Scholar 

  21. T. Engers, PhD thesis, University of Essen, Essen (1994).

    Google Scholar 

  22. See, e.g., Atoms in Intense Fields, M. Garvila, ed., Academic Press, Boston (1992).

    Google Scholar 

  23. R. L. Carman, D. W Forslund, and J. M. Kindel, Visible harmonic generation as a way of measuring profile steepening, Phys. Rev. Lett. 46: 29 (1981).

    Article  ADS  Google Scholar 

  24. R. L. Carman, C. K. Rhodes, and R. F. Benjamin, Observation of harmonics in the visible and ultraviolet created in CO2-laser-produced plasmas, Phys. Rev. A 24: 2649 (1981).

    Article  ADS  Google Scholar 

  25. B. Bezzerides, R. D. Jones, and D. W. Forslund, Plasma mechanism for ultraviolet harmonic generation due to intense CO2 light, Phys. Rev. Lett. 49: 202 (1982).

    Article  ADS  Google Scholar 

  26. C. Grebogi, V. K. Teripathi, and H. H. Chen, Harmonic generation of radiaton in a steep density profile, Phys. Fluids 26: 1904 (1983).

    Article  ADS  Google Scholar 

  27. S. Kohlweyer, G. D. Tsakiris, C. G. Wahlström, C. Tillman, and I. Mercer, Harmonic generation from solid-vacuum interface irradiated at high laser intensities, Optics Comm. 117: 431 (1995).

    Article  ADS  Google Scholar 

  28. D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A. Antonetti, Generation of high order harmonics from solid surfaces by intense femtosecond laser pulses, Phys. Rev. A 52: 25 (1995).

    Article  ADS  Google Scholar 

  29. P. Gibbon, “Harmonic generation from solid-vacuum interface irradiated at high laser intensities”, Phys. Rev. Lett. 76:50(1981).

    Article  ADS  Google Scholar 

  30. R. Lichters, J. Meyer-ter-Vehn, and A. Pukhov, Short pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity, Phys. Plasmas, in print.

    Google Scholar 

  31. P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, M. Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N. Walsh, J. S. Wark, A. E. Angor, Efficient extreme UV harmonic generation from picosecond laser pulse interactions with solid targets, Phys. Rev. Lett. 76: 1832 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

von der Linde, D. (1997). Laser-Plasma Interaction in the Femtosecond Time Regime. In: Burke, P.G., Joachain, C.J. (eds) Photon and Electron Collisions with Atoms and Molecules. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5917-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5917-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7713-9

  • Online ISBN: 978-1-4615-5917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics