Skip to main content

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

The incessant advance of laser technology has pushed the peak electric-field strengths produced by lasers to well above the atomic unit, 5.14 109 V /cm [1], and there appears to be no limit in sight. Under these circumstances, the amplitude of the oscillating field is many times larger than the average electrostatic field experienced by an electron in the ground state of the hydrogen atom. Obviously, this changes drastically the laser-atom interaction phenomena as known at low intensities, and in particular ionization [2]. Indeed, in superintense fields ionization acquires a striking feature, sometimes termed as “counter-intuitive”: stabilization. In the following we present an overview of ultra-strong field stabilization, theoretical and experimental [3], [4]. In this Introduction, we start by placing the phenomenon into perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For linear polarization, this corresponds to the atomic unit of intensity, 3.51 106 W / cm2.

    Google Scholar 

  2. For an overview of intense-field laser-atom interactions, and in particular ionization, see: (a) the volume Atoms in Intense Laser Fields, Ed. M. Gavrila (Academic Press, 1992), and the review articles:

    Google Scholar 

  3. Atoms in Ultra-intense Laser Fields, by K. Burnett, V.C. Reed, and P.L. Knight, J.Phys. B 26, 561 (1993)

    Article  ADS  Google Scholar 

  4. Ionization Dynamics in Strong Laser Fields, by L.F. DiMauro and P. Agostini, Adv.At.Mol. Opt.Phys. 35, 79 (1995).

    Article  ADS  Google Scholar 

  5. Other types of stabilization have been considered in the literature, e.g see the discussion by H.G. Muller in Superintense Laser-Atom Physics IV, Eds. H.G. Muller and M. Fedorov (Kluwer Acad.Publ., 1996), p.1. We shall limit ourselves here to ultra-strong field stabilization. No reference will be made to the classical form of stabilization.

    Chapter  Google Scholar 

  6. An overview of superintense-field stabilization, at a more general level, was given by J. H. Eberly and K.C. Kulander, Science 262, 1229 (1993).

    Article  ADS  Google Scholar 

  7. N.B. Delone and G.S. Voronov, JETP Letters 1, 66 (1965)

    ADS  Google Scholar 

  8. J.L. Hall, E.J. Robinson, and L.M. Branscomb, Phys.Rev.Lett. 14, 1013 (1965).

    Article  ADS  Google Scholar 

  9. P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N.K. Rahman, Phys.Rev. Lett. 42, 1127(1979).

    Article  ADS  Google Scholar 

  10. M. Göppert-Mayer, Ann.Phys.(Leipzig) 9, 273 (1931).

    Article  Google Scholar 

  11. P. Kruit, J. Kimman, H.G, Müller, and M.J. van der Wiel, Phys.Rev.A 28, 248 (1983).

    Article  ADS  Google Scholar 

  12. (a) W. Pauli and M. Fierz, Nuovo Cimento 15, 167 (1938)

    Article  MATH  Google Scholar 

  13. (b) H. A. Kramers, see Collected Scientific Papers (North Holland, Amsterdam, 1956), p.866

    Google Scholar 

  14. (c) W.C. Henneberger, Phys.Rev.Lett. 21, 838 (1968)

    Article  ADS  Google Scholar 

  15. (d) F. H. Faisal, J.Phys.B 6, L89 (1973).

    Article  ADS  Google Scholar 

  16. Historically, the method of complex eigenvalues (in the absence of the external periodic field) was invented by J. J. Thomson [Proc.London. Math.Soc.15 (1),197 (1884)]

    Article  MathSciNet  MATH  Google Scholar 

  17. in the context of quantum mechanics it was introduced by G. Gamow [Zeits.f. Phys. 51, 204 (1928)].

    Article  ADS  MATH  Google Scholar 

  18. The Floquet theory for differential equations originates with G. Floquet, Ann.Ec.Norm.Suppl. 12, 47 (1883).

    MathSciNet  MATH  Google Scholar 

  19. In the adiabatic case, the exponential decay law is expressed as: \( \left( {N\,/\;{N_o}} \right) = \exp \left( { - \smallint \Gamma \left( {{t^{'}}} \right)d{t^{'}}} \right) \); see M. H. Mittleman and A. Tip, J.Phys.A 17, 571 (1984).

    Google Scholar 

  20. M. Dörr, O. Latinne, and C.J. Joachain [Phys.Rev.A 52, 4289 (1995)], have shown, by comparing with wave-packet calculations, that the Floquet description can give rather accurate values for the ionization probabilities.

    Article  ADS  Google Scholar 

  21. J.C. Wells, I. Simbotin, and M. Gavrila, submitted for publication.

    Google Scholar 

  22. Shih-I Chu and W. P. Reinhardt, Phys.Rev.Lett 39, 1195 (1977),

    Article  ADS  Google Scholar 

  23. see also Shih-I Chu, Adv.At.Mol.Phys. 21, 197 (1985)

    Article  ADS  Google Scholar 

  24. Shih-I Chu Adv. Chem. Phys. 73, 739 (1989).

    Article  Google Scholar 

  25. N. Moiseyev and H.J. Korsch, Phys.Rev.A 41, 498 (1990)

    Article  ADS  Google Scholar 

  26. N. Ben-Tal, N. Moiseyev, and R. Kosloff, Phys.Rev.A 48, 2437 (1993).

    Article  ADS  Google Scholar 

  27. R. M. Potvliege and R. Shakeshaft, Phys.Rev.A 40, 3061 (1989)

    Article  ADS  Google Scholar 

  28. R. M. Potvliege and R. Shakeshaft, Phys.Rev.A 41, 1609 (1990), see also [For an overview of intense-field laser-atom interactions, and in particular ionization, see: (a) the volume Atoms in Intense Laser Fields, Ed. M. Gavrila (Academic Press, 1992), and the review articles:], p.373.

    Article  ADS  Google Scholar 

  29. L. Dimou and F. H. M. Faisal, Phys.Rev.Lett. 59, 872 (1987)

    Article  ADS  Google Scholar 

  30. F.H.M. Faisal, L. Dimou, H.J. Stiemke, and M. Nurhuda, J. Nonlin.Opt.Phys.Mat. 4, 701 (1995).

    Article  Google Scholar 

  31. P. Marte and P. Zoller, Phys.Rev.A 43, 1512 (1991).

    Article  ADS  Google Scholar 

  32. P. G. Burke, P. Francken, and C. J. Joachain, Europhys.Lett. 13, 617 (1990)

    Article  ADS  Google Scholar 

  33. P. G. Burke, P. Francken, and C. J. Joachain J.Phys.B 24, 761 (1991)

    Article  ADS  Google Scholar 

  34. M. Dörr, M. Terao-Dunseath, J. Purvis, C.J. Noble, P.G. Burke, and C.J. Joachain, J.Phys.B 25, 2809 (1992).

    Article  ADS  Google Scholar 

  35. HFFT for scattering: M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett. 52, 614 (1984).

    Article  ADS  Google Scholar 

  36. HFFT for ionization: M. Gavrila, in Fundamentals of Laser Interactions, Editor F. Ehlotzky (Lecture Notes in Physics, vol. 229; Springer, Berlin, 1985), p. 3.

    Google Scholar 

  37. A systematic account of the HFFT for the ionization of one-electron atoms was given in by the author in Atomic Structure and Decay in Hygh-frequency Fields, see [the volume Atoms in Intense Laser Fields, Ed. M. Gavrila (Academic Press, 1992), and the review articles:] p.435.

    Google Scholar 

  38. (a) J. I. Gersten and M. H. Mittleman, J.Phys.B 9, 2561 (1976).

    Article  ADS  Google Scholar 

  39. (b) The papers by J. Gersten and M. Mittleman [Phys.Rev.A 10, 74 (1974); 11, 1103 (1975)], are not related to adiabatic stabilization, as they are specifically dealing with low frequencies. They lead to a different dependence of Ton I and co than our equations [e.g., Eq.(16) for circular polarization].

    Article  ADS  Google Scholar 

  40. K. Kulander Phys.Rev.A 35, 445 (1987)

    Article  ADS  Google Scholar 

  41. K. Kulander Phys.Rev.A 36, 2726 (1987)

    Article  ADS  Google Scholar 

  42. K. Kulander Phys.Rev.A38, 778 (1988); see also [1], p.247.

    Article  ADS  Google Scholar 

  43. P. DeVries, J.Opt.Soc.Am.B 7, 517 (1990).

    Article  ADS  Google Scholar 

  44. K.J. LaGattuta, J.Opt.Soc.Am.B 7, 639 (1990)

    Article  ADS  Google Scholar 

  45. K.J. LaGattuta Phys.Rev.A 43, 5157 (1991).

    Article  ADS  Google Scholar 

  46. M.S. Pindzola, G.J. Bottrell, and C. Bottcher, J.Opt.Soc.B 7, 659 (1990).

    Article  ADS  Google Scholar 

  47. M. Pont, D. Proulx, and R. Shakeshaft, Phys.Rev.A 44, 4486 (1991).

    Article  ADS  Google Scholar 

  48. X. Tang, H. Rudolph, and P. Lambropoulos, Phys.Rev.Lett. 65, 3269 (1990).

    Article  ADS  Google Scholar 

  49. M. Gajda, B. Piraux, and K. Rzazewski, Phys.Rev.A 50, 2528 (1994).

    Article  ADS  Google Scholar 

  50. M. Horbatsch, Phys.Rev.A 44, R5346 (1991)

    Article  ADS  Google Scholar 

  51. M. Horbatsch J.Phys.B 24, 4919 (1991)

    Article  ADS  Google Scholar 

  52. M. Horbatsch J.Phys.B 25, 1745 (1992).

    Article  ADS  Google Scholar 

  53. J. Javanainen, J.H. Eberly, and Q.Su, Phys.Rev.A 38, 3430 (1988)

    Article  ADS  Google Scholar 

  54. Q. Su, J. H. Eberly, and J. Javanainen, Phys.Rev. Lett. 64, 862 (1990)

    Article  ADS  Google Scholar 

  55. Q. Su and J.H. Eberly, J. Opt.Soc.Am.B 7, 564 (1990)

    Article  ADS  Google Scholar 

  56. C.K. Law, Q. Su, and J.H. Eberly, Phys. Rev.A 44, 7844 (1991)

    Article  ADS  Google Scholar 

  57. J.H. Eberly, R. Grobe, C. K. Law, and Q. Su, in [Atoms in Ultra-intense Laser Fields, , J.Phys. B 26, 561 (1993)], p.301,

    Article  Google Scholar 

  58. [ An overview of superintense-field stabilization, at a more general level, was given by J. H. Eberly and K.C. Kulander, Science 262, 1229 (1993).].

    Article  ADS  Google Scholar 

  59. V. Reed and K. Burnett, Phys.Rev.A 42, 3152 (1990)

    Article  ADS  Google Scholar 

  60. V. C. Reed, P. L. Knight, and K. Burnett, Phys.Rev.Lett. 6, 1415 (1991)

    Article  ADS  Google Scholar 

  61. R.M.A. Vivirito and P.L. Knight, J.Phys.B 28, 4357 (1995).

    Article  ADS  Google Scholar 

  62. Adiabatic stabilization: (a) Ground state of H: M. Pont and M. Gavrila, Phys.Rev.Lett. 65, 2362 (1990); presented at the SILAP I conference, Rochester, NY, June 1989.

    Article  ADS  Google Scholar 

  63. Rydberg states: R. J. Vos and M. Gavrila, Phys.Rev.Lett. 68, 170 (1992).

    Article  ADS  Google Scholar 

  64. Adiabatic stabilization calculations for the ground state of H, according to method:

    Google Scholar 

  65. (a) Sturmian: M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, Phys. Rev.A 43, 3729 (1991).

    Article  ADS  Google Scholar 

  66. Close-coupling: P. Marte and P. Zoller, Phys.Rev.Lett. 59, 872 (1987)

    Article  Google Scholar 

  67. L. Dimou and F.H. Faisal, Phys.Rev.A 46, 4442 (1992)

    Article  ADS  Google Scholar 

  68. see also R. M. Potvliege and R. Shakeshaft, Phys.Rev.A 41, 1609 (1990)

    Article  ADS  Google Scholar 

  69. R-matrix: M. Dörr, P.G. Burke, C. J. Joachain, C. J. Noble, J. Purvis, and M. Terao-Dunseath, J.Phys.B 26, L275 (1993).

    Article  Google Scholar 

  70. K.C. Kulander, K.J. Schafer, and J.L. Krause, Phys.Rev.Lett. 66, 2601 (1991)

    Article  ADS  Google Scholar 

  71. see also Atoms in Ultra-intense Laser Fields, by K. Burnett, V.C. Reed, and P.L. Knight, J.Phys. B 26, (1993)], p.247

    Article  Google Scholar 

  72. J. H. Eberly and K.C. Kulander, Science 262, 1229 (1993).

    Article  ADS  Google Scholar 

  73. M.P. de Boer, J.H. Hoogenraad, R.B. Vrijen, R.C. Constantinescu, L. D. Noordam, and H.G. Muller, Phys.Rev.Lett. 71, 3263 (1993)

    Article  ADS  Google Scholar 

  74. M.P. de Boer, J.H. Hoogenraad, R.B. Vrijen, R.C. Constantinescu, L. D. Noordam, and H.G. Muller Phys.Rev.A 50, 4085 (1994)

    Article  ADS  Google Scholar 

  75. N. J. van Druten, R. Constantinescu, J. M. Schins, H. Nieuwenhuize, and H.G. Muller, Phys.Rev.A 55, 622 (1997).

    Article  ADS  Google Scholar 

  76. The condition a a2 0 ω>> 1, mentioned in [M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett. 52, 614 (1984).] and reproduced by others

    Article  ADS  Google Scholar 

  77. (e.g., in [L.F. DiMauro and P. Agostini, Adv.At.Mol. Opt.Phys. 35, 79 (1995).]), has proven to be superfluous.

    Article  ADS  Google Scholar 

  78. M. Gavrila and J. Shertzer, Phys. Rev.A 53, 3431 (1996).

    Article  ADS  Google Scholar 

  79. The methods applied were: diagonalization in a multicenter Gaussian basis set [. Pont, N. Walet, and M. Gavrila, Phys.Rev.A 41, 477 (1990).]

    Article  ADS  Google Scholar 

  80. two different finite element programs[Close-coupling: P. Marte and P. Zoller, Phys.Rev.Lett. 59, 872 (1987)]

    Article  Google Scholar 

  81. [M. Gavrila and J. Shertzer, Phys. Rev.A 53, 3431 (1996).]

    Article  ADS  Google Scholar 

  82. diagonalization in a Slater-type basis set in spheroidal coordinates [H.G. Muller and M. Gavrila, Phys.Rev.Lett. 71, 1693 (1993).].

    Article  ADS  Google Scholar 

  83. M. Pont, N. Walet, and M. Gavrila, Phys.Rev.A 41, 477 (1990).

    Article  ADS  Google Scholar 

  84. M. Marinescu and M. Gavrila, Phys.Rev.A 53, 2513 (1996).

    Article  ADS  Google Scholar 

  85. From now on we shall be using atomic units, unless otherwise specified.

    Google Scholar 

  86. Note that the stabilization branches of the curves have barely perceptible undulations. However, stabilization calculations done for 1D atomic models with potentials of short-range [G. Yao and Shih-I Chu, Phys.Rev.A 45, 6735 (1992)],

    Article  ADS  Google Scholar 

  87. or long-range [M. Marinescu and M. Gavrila, Phys.Rev.A 53, 2513 (1996)]

    Article  ADS  Google Scholar 

  88. display a quite prominent superimposed oscillatory behavior. Similar oscillations appear also for the ionization probabilities of 1D models calculated from WPD see Su et al.[Q.Su, B.P. Irving, C.W. Johnson, and J.H. Eberly, J.Phys.B 29, 5755 (1996).]. It was concluded, however, by Marinescu and Gavrila that this is a specific feature of 1D models.

    Article  ADS  Google Scholar 

  89. Moon-Gu Baik, M. Pont, and R. Shakeshaft, PRA 51, 3117 (1995).

    Article  ADS  Google Scholar 

  90. R.M. Potvliege and P.H.G. Smith, Phys.Rev.A.48, R46 (1993).

    Article  ADS  Google Scholar 

  91. A. Scrinzi, N. Elander, and B. Piraux, Phys.Rev.A 48, R2527 (1993).

    Article  ADS  Google Scholar 

  92. A. Buchleitner and D. Delande, Phys.Rev.Lett. 71, 3633 (1993).

    Article  ADS  Google Scholar 

  93. L. Dimou and F.H. Faisal, Phys.Rev.A 49, 4564 (1994)

    Article  ADS  Google Scholar 

  94. see also Faisal et al. [F.H.M. Faisal, L. Dimou, H.J. Stiemke, and M. Nurhuda, J. Nonlin.Opt.Phys.Mat. 4, 701 (1995).].

    Article  Google Scholar 

  95. M. H. Mittleman, Phys.Rev.A 42, 5645 (1990).

    Article  ADS  Google Scholar 

  96. H.G. Muller and M. Gavrila, Phys.Rev.Lett. 71, 1693 (1993).

    Article  ADS  Google Scholar 

  97. E.van Duijn, M. Gavrila, and H.G. Muller, Phys.Rev.Lett. 77, 3759 (1996).

    Article  ADS  Google Scholar 

  98. The correct way of deriving the ionization probability PE(τ) from the wave function Ψ in the oscillating frame [solution of Eq(3)], was given by Vivirito and Knight, [R.M.A. Vivirito and P.L. Knight, J.Phys.B 28, 4357 (1995)].

    Article  ADS  Google Scholar 

  99. J.C. Wells and M. Gavrila, in preparation.

    Google Scholar 

  100. Grobe and M.V. Fedorov, Phys.Rev.Lett. 68, 2592 (1992)

    Article  ADS  Google Scholar 

  101. Grobe and M.V. Fedorov J.Phys.B 26, 1181 (1993).

    Article  ADS  Google Scholar 

  102. K. Sonnenmoser, J.Phys.B 26, 457 (1993).

    Article  ADS  Google Scholar 

  103. Q.Su, B.P. Irving, C.W. Johnson, and J.H. Eberly, J.Phys.B 29, 5755 (1996).

    Article  ADS  Google Scholar 

  104. T. Ménis, R. Taïeb, V. Véniard, and A. Maquet, J.Phys.B 25, L263 (1992).

    Article  Google Scholar 

  105. Although the global rate has the shape of an adiabatic rate curve (e.g., our Fig.4), it should be remembered, however, that it represents the decay of a coherent superposition of dressed states.

    Google Scholar 

  106. M. Pont and R. Shakeshaft, Phys.Rev.A 44, R4110 (1991).

    Article  ADS  Google Scholar 

  107. E. Huens and B. Piraux, Phys.Rev.A 47, 1568 (1993).

    Article  ADS  Google Scholar 

  108. We mention in this respect the free-electron laser, now under construction at Brookhaven National Laboratory, with projected photon energy in the range 10–25 eV, intensity in the range 1–100 a.u., and pulse duration ~ 5 fs.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gavrila, M. (1997). Stabilization of Atoms by Ultra-Strong Laser Fields. In: Burke, P.G., Joachain, C.J. (eds) Photon and Electron Collisions with Atoms and Molecules. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5917-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5917-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7713-9

  • Online ISBN: 978-1-4615-5917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics