Skip to main content
Book cover

Cholesterol pp 235–276Cite as

Lipoproteins and Cellular Cholesterol Homeostasis

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

Appropriate membrane structure and function in eukaryotic cells requires the presence of cholesterol (for reviews, see Yeagle, 1985, and Chapters 6 and 7 in this book). This cell cholesterol originates from endogenous and exogenous sources, with the latter being provided by plasma lipoproteins. In light of this link, it is necessary to know the essential features of both lipoprotein and cell cholesterol metabolism to understand how cholesterol homeostasis is achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, S. J., Glick, J. M., Phillips, M. C., and Rothblat, G. H. 1984, Lipid composition and physical state effects on cellular cholesteryl ester clearance, J. Biol. Chem. 259:13844–13850.

    PubMed  CAS  Google Scholar 

  • Aikawa, K., Furuchi, T., Fujimoto, Y., Arai, H., and Inoue, K., 1994, Structure-specific inhibition of lysosomal cholesterol transport in macrophages by various steroids, Biochim. Biophys. Acta 1213:127–134.

    PubMed  CAS  Google Scholar 

  • Akira, Q. L., Komaba, A., and Yokoyama, S., 1993, Cholesterol is pooly available for free apolipoprotein-mediated cellular lipid efflux from smooth muscle cells, Biochemistry 32: 4597–4603.

    Google Scholar 

  • Anantharamaiah, G. M., Jones, J. L., Brouillette, C. G., Schmidt, C. F., Chung, B. H., Hughes, T. A., Bhown, A. S., and Segrest, J. P., 1985, Studies of synthetic peptide analogs of the amphipathic helix, J. Biol. Chem. 260:10248–10255.

    PubMed  CAS  Google Scholar 

  • Atger, V., de la Llera Moya, M., Bamberger, M., Francone, O., Casgrove, P., Tall, A., Walsh, A., Moatti, N., and Rothblat, G., 1995, Cholesterol efflux potential of sera from mice expressing human CETP and/or human apolipoprotein AI, J. Clin. Invest. 96:2613–2622.

    PubMed  CAS  Google Scholar 

  • Aviram, M., Bierman, E. L., and Oram, J. F., 1989, High density lipoprotein stimulates sterol translocation between intracellular and plasma membrane pools in human monocyte-derived macrophages, J. Lipid Res. 30:65–76.

    PubMed  CAS  Google Scholar 

  • Axelson, M., and Larsson, O., 1995, Low density lipoprotein (LDL) cholesterol is converted to 27-hydroxycholesterol in human fibroblasts, J. Biol. Chem. 270:15102–15110.

    PubMed  CAS  Google Scholar 

  • Banka, C. L., Black, A. S., and Curtiss, L. K., 1994, Localization of an apolipoprotein A-I epitope critical for lipoprotein-mediated cholesterol efflux from monocytic cells, J. Biol. Chem. 269:10288–10297.

    PubMed  CAS  Google Scholar 

  • Barbaras, R., Puchois, P., Fruchart, J.-C, and Ailhaud, G., 1987, Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI: AII particles, Biochem. Biophys. Res. Commum. 142:63–69.

    CAS  Google Scholar 

  • Barkia, A., Puchois, P., Ghalim, N., Torpier, G., Barbaras, R., Ailhaud, G., and Fruchart, J. C., 1991, Differential role of apolipoprotein AI-containing particles in cholesterol efflux from adipose cells, Atherosclerosis 87:135–146.

    PubMed  CAS  Google Scholar 

  • Bellini, F., Phillips, M. C., Pickell, C., and Rothblat, G. H., 1984, Role of the plasma membrane in the mechanism of cholesterol efflux from cells, Biochim. Biophys. Acta 777:209–215.

    PubMed  CAS  Google Scholar 

  • Bernard, D. W., Rodriguez, A., Rothblat G. H., and Glick, J. M., 1990, Influence of high density lipoprotein on esterified cholesterol stores in macrophages and hepatoma cells, Arteriosclerosis 10:135–144.

    PubMed  CAS  Google Scholar 

  • Bernard, D. W., Rodriguez, A., Rothblat G. H., and Glick, J. M., 1991, cAMP stimulates cholesteryl ester clearance to high density lipoproteins in J774 macrophages, J. Biol. Chem. 266:710–716.

    PubMed  CAS  Google Scholar 

  • Bielicki, J. K., Johnson, W. J., Weinberg, R. B., Glick J. M., and Rothblat, G. H., 1991, Efflux of phospholipids from fibroblasts with normal and elevated levels of cholesterol, Biochim. Biophys. Acta 1084:7–14.

    Google Scholar 

  • Bielicki, J. K., Johnson, W. J., Weinberg, R. B., Glick, J. M., and Rothblat, G. H., 1992, Efflux of lipid from fibroblasts to apolipoproteins: dependence on elevated levels of cellular unesterified cholesterol, J. Lipid Res. 33:1699–1710.

    PubMed  CAS  Google Scholar 

  • Bittman, R., 1988, Sterol exchange between mycoplasma membranes and vesicles, in: Biology of Cholesterol (P. L. Yeagle, ed.), pp. 173–195, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bittman, R., 1993, Mycoplasma membrane lipids: chemical composition and transbilayer distribution, in: Subcellular Biochemistry, Vol. 20 (S. Rottem and I. Kahane, eds.), pp. 29–52, Springer Science+Business Media New York.

    Google Scholar 

  • Bjorkhem, I., Andersson, O., Diczfalusy, U., Sevastik, B., Xiu, R. J., Duan, C., and Lund, E., 1994, Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages, Proc. Natl. Acad. Sci. USA 91:8592–8596.

    PubMed  CAS  Google Scholar 

  • Blanchette-Mackie, E. J., Dwyer, N. K., Vanier, M. T., Sokol, J., Merrick, H. F., Comly, M. E., Argoff, C. E., and Pentchev, P. G., 1989, Type C Niemann-Pick disease: dimethyl sulfoxide moderates abnormal LDL-cholesterol processing in mutant fibroblasts, Biochim. Biophys. Acta 1006:219–226.

    PubMed  CAS  Google Scholar 

  • Brasaemle, D. L., and Attie, A. D., 1990, Rapid intracellular transport of LDL-derived cholesterol to the plasma membrane in cultured fibroblasts, J. Lipid Res. 31:103–111.

    PubMed  CAS  Google Scholar 

  • Breslow, J. L., 1995, Familial disorders of high-density lipoprotein metabolism, in: The Metabolic and Molecular Basis of Inherited Disease, (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2031–2052, McGraw-Hill, New York.

    Google Scholar 

  • Bretscher, M. S., and Munro, S., 1993, Cholesterol and the Golgi apparatus, Science 261:1280–1281.

    PubMed  CAS  Google Scholar 

  • Brouillette, C., and Anantharamaiah, G. M., 1995, Structural models of human apolipoprotein A-I, Biochim. Biophys. Acta 1256:103–129.

    PubMed  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1983, Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis, Annu. Rev. Biochem. 52:223–261.

    PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1986, A receptor-mediated pathway for cholesterol homeostasis, Science 232:34–47.

    PubMed  CAS  Google Scholar 

  • Brown, M. S., Ho, Y. K., and Goldstein, J. L., 1980, The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters, J. Biol. Chem. 255:9344–9352.

    PubMed  CAS  Google Scholar 

  • Brown, R. E., 1992, Spontaneous lipid transfer between organized lipid assemblies, Biochim. Biophys. Acta 1113:375–389.

    PubMed  CAS  Google Scholar 

  • Butler, J. D., Blanchette-Mackie, J., Goldin, E., O’Neill, R. R., Carstea, G., Roff, C. F., Patterson, M. C., Patel, S., Comly, M. E., Cooney, A., Vanier, M. T., Brady, R. O., and Pentchev, P. G., 1992, Progesterone blocks cholesterol translocation from lysosomes, J. Biol. Chem. 267:23797–23805.

    PubMed  CAS  Google Scholar 

  • Cadigan, K. M., Spillane, D. M., and Chang, T.-Y, 1990, Isolation and characterization of Chinese hamster ovary cell mutants defective in intracellular low density lipoprotein-cholesterol trafficking, J. Cell Biol. 110:295–308.

    PubMed  CAS  Google Scholar 

  • Castro, G. R., and Fielding, C. J., 1988, Early incorporation of cell-derived cholesterol into pre-β-migrating high-density lipoprotein, Biochemistry 27:25–29.

    PubMed  CAS  Google Scholar 

  • Chesterton, C. J., 1968, Distribution of cholesterol precursors and other lipids among rat liver intracellular structures, J. Biol. Chem. 243:1147–1151.

    PubMed  CAS  Google Scholar 

  • Cheung, M. C., and Albers, J. J., 1984, Characterization of lipoprotein particles isolated by immuno-affinity chromatography, J. Biol. Chem. 259:12201–12209.

    PubMed  CAS  Google Scholar 

  • Chiang, J. Y. L., Miller, W. F., and Lin, G. M., 1990, Regulation of cholesterol 7 α-hydroxylase in the liver, J. Biol. Chem. 265:3889–3897.

    PubMed  CAS  Google Scholar 

  • Cooper, R. A., Leslie, M. H., Fischkoff, S., Shinitzky, M., and Shattil, S. J., 1978, Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid, Biochemistry 17:327–331.

    PubMed  CAS  Google Scholar 

  • Coxey, R. A., Pentchev, P. G., Campbell, G., and Blanchette-Mackie, E. J., 1993, Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study, J. Lipid Res. 34:1165–1176.

    PubMed  CAS  Google Scholar 

  • Dahl, N. K., Reed, K. L., Daunais, M. A., Faust, J. R., and Liscum, L., 1992, Isolation and characterization of Chinese hamster ovary cells defective in the intracellular metabolism of low density lipoprotein-derived cholesterol, J. Biol. Chem. 267:4889–4896.

    PubMed  CAS  Google Scholar 

  • Dahl, N. K., Daunais, M. A., and Liscum, L., 1994, A second complementation class of cholesterol transport mutants with a variant Niemann-Pick type C phenotype, J. Lipid Res. 35:1839–1849.

    PubMed  CAS  Google Scholar 

  • Davidson, W. S., Lund-Katz, S., Johnson, W. J., Anantharamaiah, G. M., Palgunachari, N., Segrest, J. P., Rothblat, G. H., and Phillips, M. C., 1994, The influence of apolipoprotein structure on the efflux of cellular free cholesterol to high density lipoprotein, J. Biol. Chem. 269: 22975–22982.

    PubMed  CAS  Google Scholar 

  • Davidson, W. S., Rodrigueza, W. V., Lund-Katz, S., Johnson, W. J., Rothblat, G. H., and Phillips, M. C., 1995a, Effects of acceptor particle size on the efflux of cellular free cholesterol, J. Biol. Chem. 270:17106–17113.

    PubMed  CAS  Google Scholar 

  • Davidson, W. S., Gillotte, K. L., Lund-Katz, S., Johnson, W. J., Rothblat, G. H., and Phillips, M. C., 1995b, The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol, J. Biol. Chem. 270:5882–5890.

    PubMed  CAS  Google Scholar 

  • de la Llera Moya, M., Atger, V., Paul, J. L., Fournier, N., Moatti, N., Giral, P., Friday, K. E., and Rothblat, G. H., 1994, A cell culture system for screening human serum for ability to promote cellular cholesterol efflux: relationships between serum components and efflux, esterification and transfer, Arterioscler. Thromb. 14:1056–1065.

    Google Scholar 

  • DeLamatre, J., Wolfbauer, G., Phillips, M. C., and Rothblat, G. H., 1986, Role of apolipoproteins in cellular cholesterol efflux, Biochim. Biophys. Acta 875:419–428.

    Google Scholar 

  • Echevarria, F., Norton, R. A., Nes, W. D., and Lange, Y., 1990, Zymosterol is located in the plasma membrane of cultured human fibroblasts, J. Biol. Chem. 265:8484–8489.

    PubMed  CAS  Google Scholar 

  • Eisenberg, S., 1984, High density lipoprotein metabolism, J. Lipid Res. 25:1017–1058.

    PubMed  CAS  Google Scholar 

  • Esnault-Dupuy, C., Chanussot, F., Lafont, H., Chabert, C., and Hauton, J., 1987, The relationship between HDL-, LDL-, liposome-free cholesterol, biliary cholesterol and bile salts in the rat, Biochim. Biophys. Acta 69:45–52.

    CAS  Google Scholar 

  • Faust, J. R., Trzaskos, J. M., and Gaylor, J. L., 1988, Cholesterol biosynthesis, in: Biology of Cholesterol (P. L. Yeagle, ed.), pp. 19–38, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Fielding, C. J., and Fielding, P. E., 1995, Molecular physiology of reverse cholesterol transport, J. Lipid Res. 36:211–228.

    PubMed  CAS  Google Scholar 

  • Fielding, C. J., and Moser, K., 1982, Evidence for the separation of albumin-and apo A-I-dependent mechanisms of cholesterol efflux from cultured fibroblasts into human plasma, J. Biol. Chem. 257:10955–10960.

    PubMed  CAS  Google Scholar 

  • Fielding, C. J., Reaven, G. M., and Fielding, P. E., 1982, Human noninsulin-dependent diabetes: Identification of a defect in plasma cholesterol transport normalized in vivo by insulin and in vitro by selective immunoadsorption of apolipoprotein E, Proc. Natl. Acad. Sci. USA 79:6365–6369.

    PubMed  CAS  Google Scholar 

  • Fielding, P. E., Fielding, C. J., Havel, R. J., Kane, J. P., and Tun, P., 1983, Cholesterol net transport, esterification, and transfer in human hyperlipidemic plasma, J. Clin. Invest. 71:449–460.

    PubMed  CAS  Google Scholar 

  • Forte, T. M., and McCall, M. R., 1994, The role of apolipoprotein A-I-containing lipoproteins in athero-sclerosis, Curr. Opin. Lipidol. 5:354–364.

    PubMed  CAS  Google Scholar 

  • Forte, T. M., Bielicki, J. K., Goth-Goldstein, R., Selmek, J., and McCall, M. R., 1995, Recruitment of cell phospholipids and cholesterol by apolipoproteins A-II and A-I: Formation of nascent apolipoprotein-specific HDL that differ in size, phospholipid composition, and reactivity with LCAT, J. Lipid Res. 36:148–157.

    PubMed  CAS  Google Scholar 

  • Freeman, D. A., 1987, Cyclic AMP mediated modification of cholesterol traffic in Leydig tumor cells, J. Biol. Chem. 262:13061–13068.

    PubMed  CAS  Google Scholar 

  • Fruchart, J. C., and Ailhaud, G., 1992, Apolipoprotein A-containing lipoprotein particles: physiological role, quantification, and clinical significance, Clin. Chem. 38:793–797.

    PubMed  CAS  Google Scholar 

  • Furuchi, T., Aikawa, K., Arai, H., and Inoue, K., 1993, Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, blocks lysosomal cholesterol trafficking in macrophages, J. Biol. Chem. 268: 27345–27348.

    PubMed  CAS  Google Scholar 

  • Glick, J. M., 1990, Intracellular cholesteryl ester hydrolysis and clearance, in: Advances in Cholesterol Research (M. Esfahani, and J. B. Swaney, eds.), pp. 167–197, Telford Press, Caldwell, NJ.

    Google Scholar 

  • Glick, J. M., Adelman, S. A., and Rothblat, G. H., 1987, Cholesteryl ester cycle in cultured hepatoma cells, Atherosclerosis 64:223–230.

    PubMed  CAS  Google Scholar 

  • Gold, J. C., and Phillips, M. C., 1990, Effects of membrane lipid composition on the kinetics of cholesterol exchange between lipoproteins and different species of red blood cells, Biochim. Biophys. Acta 1027:85–92.

    PubMed  CAS  Google Scholar 

  • Gold, J. C., and Phillips, M. C., 1992, Effects of membrane lipids and-proteins and cytoskeletal proteins on the kinetics of cholesterol exchange between high density lipoprotein and human red blood cells, ghosts and microvesicles, Biochim. Biophys. Acta 1111:103–110.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. L., and Brown, M. S., 1977, The low density lipoprotein pathway and its relation to atherosclerosis, Annu. Rev. Biochem. 46:897–930.

    PubMed  CAS  Google Scholar 

  • Hakamata, H., Miyazaki, A., Sakai, M., Suginohara, Y., Sakamoto, Y.-L, and Horiuchi, S., 1994, Species difference in cholesteryl ester cycle and HDL-induced cholesterol efflux from macrophage foam cells, Arterioscler. Thromb. 14:1860–1865.

    PubMed  CAS  Google Scholar 

  • Hara, H., and Yokoyama, S., 1991, Interaction of free apolipoproteins with macrophages, J. Biol. Chem. 266:3080–3086.

    PubMed  CAS  Google Scholar 

  • Harmala, A., Porn, M. I., Mattjus, P., and Slotte, J. P., 1994, Cholesterol transport from plasma membranes to intracellular membranes is inhibited by 3β-[2-(diethylamino)ethoxy]androst-5-en-17-one, Biochim. Biophys. Acta 1211:317–325.

    PubMed  CAS  Google Scholar 

  • Havel, R. J., and Kane, J. P., 1995, Introduction: Structure and metabolism of plasma lipoproteins, in: The Metabolic and Molecular Basis of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 1841–1851, McGraw-Hill, New York.

    Google Scholar 

  • Hayek, T., Chajek-Shaul, T., Walsh, A., Agellon, L. B., Moulin, P., Tall, A. R., and Breslow, J. L., 1992, An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels, J. Clin. Invest. 90:505–510.

    PubMed  CAS  Google Scholar 

  • Hodenberg, E., Heinen, S., Howell, K. E., Luley, C., Kubier, W., and Bond, H. M., 1991, Cholesterol efflux from macrophages mediated by high-density lipoprotein subfractions, which differ principally in apolipoprotein A-I and apolipoprotein A-II ratios, Biochem. Biophys. Res. Commun. 1086:173–184.

    Google Scholar 

  • Hokland, B. M., Slotte, J. P., Bierman, E. L., and Oram, J. F., 1993, Cyclic AMP stimulates efflux of intracellular sterol from cholesterol-loaded cells, J. Biol. Chem. 268:25343–25349.

    PubMed  CAS  Google Scholar 

  • Holtzman, E., 1989, Lysosomes, Springer Science+Business Media New York.

    Google Scholar 

  • Huang, Y., von Eckardstein, A., Wu, S., Maeda, N., and Assmann, G., 1994, A plasma lipoprotein containing only apolipoprotein E and with gamma mobility on electrophoresis releases cholesterol from cells, Proc. Natl. Acad. Sci. USA 91:1834–1838.

    PubMed  CAS  Google Scholar 

  • Jackson, R. L., Gotto, A. M., Stein, O., and Stein, Y., 1975, A comparative study on the removal of cellular lipids from landschutz ascites cells by human plasma apolipoproteins, J. Biol. Chem. 250:7204–7209.

    PubMed  CAS  Google Scholar 

  • Jansen, H., and Hulsmann, W. C., 1980, Heparin-releasable (liver) lipase(s) may play a role in the uptake of cholesterol by steroid-secreting tissues, Trends Biochem. Sci. 5:265–268.

    CAS  Google Scholar 

  • Javitt, N. B., 1994, Bile acid synthesis from cholesterol: regulatory and auxiliary pathways, FASEB J. 8:1308–1311.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., 1996, Cell-free transfer of cholesterol from lysosomes to phospholipid vesicles, J. Lipid Res. 37:54–66.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., and Reinhart, M. P., 1994, Lack of requirement for sterol carrier protein-2 in the intracellular trafficking of lysosomal cholesterol, J. Lipid Res. 35:563–573.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., Bamberger, M. J., Latta, R. A., Rapp, P. E., Phillips, M. C., and Rothblat, G. H., 1986, The bidirectional flux of cholesterol between cells and lipoproteins, J. Biol. Chem. 261: 5766–5776.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., Mahlberg, F. H., Chacko, G. K., Phillips, M. C., and Rothblat, G. H., 1988, The influence of cellular and lipoprotein cholesterol contents on the flux of cholesterol between fibroblasts and high density lipoprotein, J. Biol. Chem. 263:14099–14106.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., Chacko, G. K., Phillips, M. C., and Rothblat, G. H., 1990, The efflux of lysosomal cholesterol from cells, J. Biol. Chem. 265:5546–5553.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., Kilsdonk, E. P. C., Van Tol, A., Phillips, M. C., and Rothblat, G. H., 1991a, Cholesterol efflux from cells to immunopurified subtractions of human high density lipoproteins: LP-AI and LP-AI/AII, J. Lipid Res. 32:1993–2000.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., Mahlberg, F. H., Rothblat, G. H., and Phillips, M. C., 1991b, Cholesterol transport between cells and high density lipoproteins, Biochim. Biophys. Acta 1085:273–298.

    PubMed  CAS  Google Scholar 

  • Johnson, W. J., Fischer, R. T., Phillips, M. C., and Rothblat, G. H., 1995, Efflux of newly synthesized cholesterol and biosynthetic sterol intermediates from cells: dependence on acceptor type and on enrichment of cells with cholesterol, J. Biol. Chem. 270:25037–25046.

    PubMed  CAS  Google Scholar 

  • Jonas, A., 1987, Lecithin cholesterol acyltransferase, in: Plasma Lipoproteins (A. M. Gotto, Jr., ed.), pp. 299–333, Elsevier, Amsterdam.

    Google Scholar 

  • Kaplan, M. R., and Simoni, R. D., 1985, Transport of cholesterol from the endoplasmic reticulum to the plasma membrane, J. Cell Biol. 101:446–453.

    PubMed  CAS  Google Scholar 

  • Kawano, M., Miida, T., Fielding, C. J., and Fielding, P. E., 1993, Quantitation of preβ-HDL-dependent and nonspecific components of the total efflux of cellular cholesterol and phospholipid, Biochemistry 32:5025–5028.

    PubMed  CAS  Google Scholar 

  • Khoo, J. C., Reue, K., Steinberg, D., and Schotz, M. C., 1993, Expression of hormone-sensitive lipase mRNA in macrophages, J. Lipid Res. 34:1969–1974.

    PubMed  CAS  Google Scholar 

  • Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P., and Krieger, M., 1990, Type I macrophage scavenger receptor containing ?-helical and collagen-like coiled coils, Nature 343: 531–535.

    PubMed  CAS  Google Scholar 

  • Komaba, A., Li, Q., Hara, H., and Yokoyama, S., 1992, Resistance of smooth muscle cells to assembly of high density lipoproteins with extracellular free apolipoproteins and to reduction of intra-cellularly accumulated cholesterol, J. Biol. Chem. 267:17560–17566.

    PubMed  CAS  Google Scholar 

  • Koval, M., and Pagano, R. E., 1990, Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts, J. Biol. Chem. 111:429–442.

    CAS  Google Scholar 

  • Kritharides, L., Jessup, W., Mander, E. L., and Dean, R. T., 1995, Apolipoprotein A-I-mediated efflux of sterols from oxidized LDL-loaded macrophages, Arterioscler. Thromb. 15:276–289.

    CAS  Google Scholar 

  • Kunitake, S. T., Mendel, C. M., and Hennessy, L. K., 1992, Interconversion between apolipoprotein A-I-containing lipoproteins of pre-beta and alpha electrophoretic mobilities, J. Lipid Res. 33: 1807–1816.

    PubMed  CAS  Google Scholar 

  • Lagrost, L., Dengremont, C., Athias, A., De Geitere, C., Fruchart, J. C., Lallemant, C., Gambert, P., and Castro, G., 1995, Modulation of cholesterol efflux from Fu5AH hepatoma cells by the apolipoprotein content of high density lipoprotein particles, J. Biol. Chem. 270:13004–13009.

    PubMed  CAS  Google Scholar 

  • Lange, Y., 1994, Cholesterol movement from plasma membrane to rough endoplasmic reticulum, J. Biol. Chem. 269:3411–3414.

    PubMed  CAS  Google Scholar 

  • Lange, Y., and Matthies, H. J. G., 1984, Transfer of cholesterol from its site of synthesis to the plasma membrane, J. Biol. Chem. 259:14624–14630.

    PubMed  CAS  Google Scholar 

  • Lange, Y., and Muraski, M. F., 1988, Topographic heterogeneity in cholesterol biosynthesis, J. Biol. Chem. 263:9366–9373.

    PubMed  CAS  Google Scholar 

  • Lange, Y., and Steck, T. L., 1985, Cholesterol-rich intracellular membranes: a precursor to the plasma membrane, J. Biol. Chem. 260:15592–15597.

    PubMed  CAS  Google Scholar 

  • Lange, Y., and Steck, T. L., 1994, Cholesterol homeostasis. Modulation by amphiphiles, J. Biol. Chem. 269:29371–29374.

    PubMed  CAS  Google Scholar 

  • Lange, Y., Schmit, V. M., and Schreiber, J. R., 1988, Localization and movement of newly synthesized cholesterol in rat ovarian granulosa cells, Endocrinol 123:81–86.

    CAS  Google Scholar 

  • Lange, Y., Echevarria, F., and Steck, T. L., 1991, Movement of zymosterol, a precursor of cholesterol, among three membranes in human fibroblasts, J. Biol. Chem. 266:21439–21443.

    PubMed  CAS  Google Scholar 

  • Lange, Y., Strebel, F., and Steck, T. L., 1993, Role of the plasma membrane in cholesterol esterifica-tion in rat hepatoma cells, J. Biol. Chem. 268:13838–13843.

    PubMed  CAS  Google Scholar 

  • Lefevre, M., Goudey-Lefevre, J. C., and Roheim, P. S., 1987, Gradient gel electrophoresis-immunoblot analysis (GGEI): a sensitive method for apolipoprotein profile determinations, J. Lipid Res. 28:1495–1507.

    PubMed  CAS  Google Scholar 

  • Lin, D., Sugawara, T., Strauss, J. F. I., Clark, B. J., Stocco, D. M., Saenger, P., Rogol. A., and Miller, W. L., 1995, Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis, Science 267:1828–1831.

    PubMed  CAS  Google Scholar 

  • Liscum, L., and Collins, G. J., 1991, Characterization of Chinese hamster ovary cells that are resistant to 3-β-[2-(diethylamino)ethoxy]androst-5-en-17-one inhibition of low density lipoprotein-derived cholesterol metabolism, J. Biol. Chem. 266:16599–16606.

    PubMed  CAS  Google Scholar 

  • Liscum, L., and Dahl, N. K., 1992, Intracellular cholesterol transport, J. Lipid Res. 33:1239–1254.

    PubMed  CAS  Google Scholar 

  • Liscum, L., and Faust, J. R., 1989, The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-β-[2-(diethylamino) ethoxy] androst-5-en-17-one, J. Biol. Chem. 264:11796–11806.

    PubMed  CAS  Google Scholar 

  • Liscum, L., and Underwood, K. W., 1995, Intracellular cholesterol transport and compartmentation, J. Biol. Chem. 270:15443–15446.

    PubMed  CAS  Google Scholar 

  • Luchoomun, J., Theret, N., Clavey, V., Duchateau, P., Rosseneu, M., Brasseur, R., Denefle, P., Fruchart, J. C., and Castro, G. R., 1994, Structural domain of apolipoprotein A-I involved in its interaction with cells, Biochim. Biophys. Acta 1212:319–326.

    PubMed  CAS  Google Scholar 

  • Lund-Katz, S., and Phillips, M. C., 1984, Packing of cholesterol molecules in human high-density lipoproteins, Biochemistry 23:1130–1138.

    PubMed  CAS  Google Scholar 

  • Mahlberg, F. H., Glick, J. M., Lund-Katz, S., and Rothblat, G. H., 1991, Influence of apolipoproteins AI, AII and C on the metabolism of membrane and lysosomal cholesterol in macrophages, J. Biol Chem. 266:19930–19937.

    PubMed  CAS  Google Scholar 

  • McKnight, G. L., Reasoner, J., Gilbert, T., Sundquist, K. O., Hokland, B., McKernan, P. A., Champagne, J., Johnson, C. J., Bailey, M. C., Holly, R., O’Hara, P. J., and Oram, J. F., 1992, Cloning and expression of a cellular high density lipoprotein-binding protein that is up-regulated by cholesterol loading of cells, J. Biol. Chem. 267:12131–12141.

    PubMed  CAS  Google Scholar 

  • Melchior, G. W., Castle, C. K., Murray, R. W., Blake, W. L., Dinh, D. M., and Marotti, K. R., 1994, Apolipoprotein A-I metabolism in cholesteryl ester transfer protein transgenic mice. Insights into the mechanisms responsible for low plasma high density lipoprotein levels, J. Biol. Chem. 269:8044–8051.

    PubMed  CAS  Google Scholar 

  • Mendez, A. J., 1995, Monensin and brefeldin A inhibit high density lipoprotein-mediated cholesterol efflux from cholesterol-enriched cells, J. Biol. Chem. 270:5891–5990.

    PubMed  CAS  Google Scholar 

  • Mendez, A. J., Oram, J. F., and Bierman, E. L., 1991, Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol, J. Biol. Chem. 266: 10104–10111.

    PubMed  CAS  Google Scholar 

  • Miida, T., Kawano, M., Fielding, C. J., and Fielding, P. E., 1992, Regulation of the concentration of pre-β high-density lipoprotein in normal plasma by cell membranes and lecithin-cholesterol acyltransferase activity, Biochemistry 31:11112–11117.

    PubMed  CAS  Google Scholar 

  • Moreau, P., Rodriguez, M., Cassagne, C., Morre, D. M., and Morre, J. D., 1991, Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in cell-free system from rat liver, J. Biol. Chem. 266:4322–4328.

    PubMed  CAS  Google Scholar 

  • Nakashima, Y., Plump, A. S., Raines, E. W., Breslow, J. L., and Ross, R., 1994, ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree, Arterioscler. Thromb. 14:133–140.

    PubMed  CAS  Google Scholar 

  • Neary, R. H., and Gowland, E., 1987, Stability of free apolipoprotein A-I concentration in serum, and its measurement in normal and hyperlipidemic subjects, Clin. Chem. 33:1163–1169.

    PubMed  CAS  Google Scholar 

  • Ohta, T., Nakamura, R., Ikeda, Y., Shinohara, M., Miyazaki, A., Horiuchi, S., and Matsuda, I., 1992, Differential effect of subspecies of lipoprotein containing apolipoprotein A-I on cholesterol efflux from cholesterol-loaded macrophages: functional correlation with lecithin: cholesterol acyltrans-ferase, Biochim. Biophys. Acta 1165:119–128.

    PubMed  CAS  Google Scholar 

  • Okawa, S., Mendez, A. J., Oram, J. F., Bierman, E. L., and Cheung, M. C., 1993, Effects of high-density lipoprotein particles containing apo A-I, with or without A-II, on intracellular cholesterol efflux, Biochim. Biophys. Acta 1165:327–334.

    Google Scholar 

  • Oram, J. F., 1983, Effects of high density lipoprotein subfractions on cholesterol homeostasis in human fibroblasts and arterial smooth muscle cells, Arteriosclerosis 3:420–432.

    PubMed  CAS  Google Scholar 

  • Oram, J. F., 1990, Cholesterol trafficking in cells, Cum Opin. Lipidology 1:416–421.

    Google Scholar 

  • Oram, J. F., Albers, J. J., Cheung, M. C., and Bierman, E. L., 1981, The effects of subfractions of high density lipoprotein on cholesterol efflux from cultured fibroblasts, J. Biol. Chem. 256:8348–8356.

    PubMed  CAS  Google Scholar 

  • Oram, J. F., Brinton, E. A., and Bierman, E. L., 1983, Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells, J. Clin. Invest. 72:1611–1621.

    PubMed  CAS  Google Scholar 

  • Oram, J. F., Mendez, A. J., Slotte, J. P., and Johnson, T. F., 1991, High density lipoprotein apolipopro-teins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterol-loaded fibroblasts, Arterioscler. Thromb. 11:403–414.

    PubMed  CAS  Google Scholar 

  • Ottnad, E., Parthasarathy, S., Sambrano, G. R., Ramprasad, M. P., Quehenberger, O., Kondratenko, N., Green, S., and Steinberg, D., 1995, A macrophage receptor for oxidized low density lipoprotein distinct from the receptor for acetyl low density lipoprotein: partial purification and role in recognition of oxidatively damaged cells, Proc. Natl. Acad. Sci. USA 92:1391–1395.

    PubMed  CAS  Google Scholar 

  • Pentchev, P. G., Vanier, M. T., Suzuki, K. and Patterson, M. C., 1995, Niemann-Pick disease type C: a cellular cholesterol lipidosis, in: The Metabolic and Molecular Bases of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2625–2639, McGraw-Hill, New York.

    Google Scholar 

  • Phillips, M. C., Johnson, W. J., and Rothblat, G. H., 1987, Mechanisms and consequences of cellular cholesterol exchange and transfer, Biochim. Biophys. Acta 906:223–276.

    PubMed  CAS  Google Scholar 

  • Picardo, M., Massey, J. B., Kuhn, D. E., Gotto, J., Gianturco, S. H., and Pownall, H. J., 1986, Partially reassembled high density lipoproteins. Effects on cholesterol flux, synthesis, and esterification in normal human skin fibroblasts, Arteriosclerosis 6:434–441.

    PubMed  CAS  Google Scholar 

  • Pieters, M. N., Schouten, D., and Van Berkel, T. J. C., 1994, In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport, Biochim. Biophys. Acta 1225:125–134.

    PubMed  CAS  Google Scholar 

  • Puglielli, L., Rigotti, A., Greco, A. V., Santos, M. J., and Nervi, F., 1995, Sterol carrier protein-2 is involved in cholesterol transfer from the endoplasmic reticulum to the plasma membrane in human fibroblasts, J. Biol. Chem. 270:18723–18726.

    PubMed  CAS  Google Scholar 

  • Ray, E., Bellini, F., Stoudt, G., Hemperly, S., and Rothblat, G. H., 1980, Influence of lecithinxholes-terol acyltransferase on cholesterol metabolism in hepatoma cells and hepatocytes, Biochim. Biophys. Acta 617:318–334.

    PubMed  CAS  Google Scholar 

  • Reichl, D., 1994, Extravascular circulation of lipoproteins: their role in reverse transport of cholesterol, Atherosclerosis 105:117–129.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M., Moreau, P., Paulik, M., Lawrence, J., Morre, D. J., and Morre, D. M., 1992, NADH-activated cell-free transfer between Golgi apparatus and plasma membranes of rat liver, Biochim. Biophys. Acta 1107:131–138.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Lafrasse, C., Rousson, R., Bonnet, J., Pentchev, P. G., Louisot, P., and Vanier, M. T., 1990, Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick/type C disease, Biochim. Biophys. Acta 1043:123–128.

    PubMed  CAS  Google Scholar 

  • Rothblat, G. H., and Phillips, M. C., 1991, Cholesterol efflux from arterial wall cells, Cum Opin. Lipidol. 2:288–294.

    CAS  Google Scholar 

  • Rothblat, G. H., Bamberger, M., and Phillips, M. C., 1986, Reverse cholesterol transport, in: Methods in Enzymology, Vol. 129 (J. Albers, and J. Segrest, eds.) pp. 628–644, Academic Press, New York.

    Google Scholar 

  • Rothblat, G. H., Mahlberg, F. H., Johnson, W. J., and Phillips, M. C., 1992, Apolipoprotein, membrane cholesterol domains, and the regulation of cholesterol efflux, J. Lipid Res. 33:1091–1098.

    PubMed  CAS  Google Scholar 

  • Rubin, E. M., Ishida, B. Y., Clift, S. M., and Krauss, R. M., 1991, Expression of human apolipoprote in A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high denisty lipoprotein size subclasses, Proc. Natl. Acad. Sci. USA 88:434–438.

    PubMed  CAS  Google Scholar 

  • Runquist, E. A., and Havel, R. J., 1991, Acid hydrolases in early and late endosome fractions from rat liver, J. Biol. Chem. 266:22557–22563.

    PubMed  CAS  Google Scholar 

  • Sarria, A. J., Panini, S. R., and Evans, R. M., 1992, A functional role for vimentin intermediate filaments in the metabolism of lipoprotein-derived cholesterol in human SW-13 cells, J. Biol. Chem. 267:19455–19463.

    PubMed  CAS  Google Scholar 

  • Sato, Y., Nishikawa, K., Aikawa, K., Mimura, K., Murakami-Murofushi, K., Arai, H., and Inoue, K., 1995, Side-chain structure is critical for the transport of sterols from lysosomes to cytoplasm, Biochim. Biophys. Acta 1257:38–46.

    PubMed  Google Scholar 

  • Schroeder, F., Jefferson, J. R., Kier, A. B., Knittel, J., Scallen, T. J., Wood, W. G., and Hapala, I., 1991, Membrane cholesterol dynamics: cholesterol domains and kinetic pools, Proc. Soc. Exp. Biol. Med. 196:235–252.

    PubMed  CAS  Google Scholar 

  • Schroeder, F., Woodford, J. K., Kavecansky, J., Wood, W. G., and Joiner, C., 1995, Cholesterol domains in biological membranes, Mol. Membrane Biol. 12:113–119.

    CAS  Google Scholar 

  • Schultz, J. R., and Rubin, E. M., 1994, The properties of HDL in genetically engineered mice, Curr. Opin. Lipidol. 5:126–137.

    PubMed  CAS  Google Scholar 

  • Schultz, J. R., Verstuyft, J. G., Gong, E. L., Nichols, A. V., and Rubin, E. M., 1993, Protein composition determines the anti-atherogenic properties of HDL in transgenic mice, Nature 365:762–764.

    PubMed  CAS  Google Scholar 

  • Segrest, J. P., Jones, M. K., De Loof, H., Brouillette, C. G., Venkatachalapathi, Y V., and Ananthara-maiah, G. M., 1992, The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function, J. Lipid Res. 33:141–166.

    PubMed  CAS  Google Scholar 

  • Skinner, E. R., 1994, High-density lipoprotein subclasses, Curr. Opin. Lipidol. 5:241–247.

    PubMed  CAS  Google Scholar 

  • Slotte, J. P., and Bierman, E. L., 1988, Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts, Biochem. J. 250:653–658.

    PubMed  CAS  Google Scholar 

  • Slotte, J. P., Oram, J. F., and Bierman, E. L., 1987, Binding of high density lipoproteins to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface, J. Biol. Chem. 262:12904–12907.

    PubMed  CAS  Google Scholar 

  • Stein, O., Stein, Y., Lefevre, M., and Roheim, P. S., 1986, The role of apolipoprotein A-IV in reverse cholesterol transport studied with cultured cells and liposomes derived from an ether analog of phosphatidylcholine, Biochim. Biophys. Acta 878:7–13.

    PubMed  CAS  Google Scholar 

  • Stein, O., Dabach, Y., Hollander, G., Ben-Nairn, M., Oette, K., and Stein, Y., 1995, Effects of interactions of apolipoprotein A-II with apolipoproteins A-I or A-IV on [3H]cholesterol efflux and uptake in cell culture, Biochim. Biophys. Acta 1257:174–180.

    PubMed  Google Scholar 

  • Strickland, D. K., Kounnas, M. Z., and Argraves, W. S., 1995, LDL receptor-related protein: a multi-ligand receptor for lipoprotein and proteinase catabolism, FASEB J. 9:890–898.

    PubMed  CAS  Google Scholar 

  • Suckling, K. E., and Stange, E. F., 1985, Role of acyl-CoA:metabolism acyltransferase in cellular cholesterol metabolism, J. Lipid Res. 26:647–671.

    PubMed  CAS  Google Scholar 

  • Sugawara, T., Holt, J. A., Driscoll, D., Strauss, J. F. I., Lin, D., Miller, W. L., Patterson, D., Clancy, K. P., Hart, I. M., Clark, B. J., and Stocco, D. M., 1995, Human steroidogenic acute regulatory protein: Functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13, Proc. Natl. Acad. Sci. USA 92: 4778–4782.

    PubMed  CAS  Google Scholar 

  • Tabacik, C., Valentin, J.-P., Aliau, S., and Descomps, B., 1991, Active cholesterol biosynthesis in cultured aortic smooth muscle cells: evolution during the lifespan of the culture, Atherosclerosis 86:123–137.

    PubMed  CAS  Google Scholar 

  • Tabas, I., Rosoff, W. J., and Boykow, G. C., 1988, Acyl coenzyme A:cholesterol acyl transferase in macrophages utilizes a cellular pool of cholesterol oxidase-accessible cholesterol as substrate, J. Biol. Chem. 263:1266–1272.

    PubMed  CAS  Google Scholar 

  • Tall, A. R., 1993, Plasma cholesteryl ester transfer protein, J. Lipid Res. 34:1255–1274.

    PubMed  CAS  Google Scholar 

  • Tangirala, R. K., Jerome, W. G., Jones, N. L., Small, D. M., Johnson, W. J., Glick, J. M., Mahlberg, F. H., and Rothblat, G., 1994, Formation of cholesterol monohydrate crystals in macrophage-derived foam cells, J. Lipid Res. 35:93–104.

    PubMed  CAS  Google Scholar 

  • Thompson, S. L., Burrows, R., Laub, R. J., and Krisans, S. K., 1987, Cholesterol synthesis in rat liver peroxisomes. Conversion of mevalonic acid to cholesterol, J. Biol. Chem. 262:17420–17425.

    PubMed  CAS  Google Scholar 

  • Tozuka, M., and Fidge, N., 1989, Purification and characterization of two high-density-lipoprotein-binding proteins from rat and human liver, Biochem. J. 261:239–244.

    PubMed  CAS  Google Scholar 

  • Urbani, L., and Simoni, R. D., 1990, Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane, J. Biol. Chem. 265:1919–1923.

    PubMed  CAS  Google Scholar 

  • van Heusden, G. P., van Beckhover, J. R. C. M., Thieringer, R., Raetz, C. R. H., and Wirtz, K. W. A., 1992, Increased cholesterol synthesis in Chinese hamster ovary cells deficient in peroxisomes, Biochim. Biophys. Acta 1126:81–87.

    PubMed  Google Scholar 

  • von Eckardstein, A., Huang, Y., and Assmann, G., 1994, Physiological role and clinical relevance of high-density lipoprotein subclasses, Cum Opin. Lipidol. 5:404–416.

    Google Scholar 

  • von Eckardstein, A., Huang, Y., Wu, S., Funke, H., Noseda, G., and Assmann, G., 1995, Reverse cholesterol transport in plasma of patients with different forms of familial HDL deficiency, Arterioscler. Thromb. 15:691–703.

    Google Scholar 

  • Waits, L., Dunkle, S., Wilkinson, F. E., Moreau, P., Safranski, K., Reust, T., Morre, D. M., and Morre, D. J., 1990, Cell-free transfer of sterols from dictyosome-like structures to plasma membrane vesicles of guinea pig testes, Protoplasma 154:8–15.

    CAS  Google Scholar 

  • Warner, G. J., Stoudt, G., Bamberger, M., Johnson, W. J., and Rothblat, G. H., 1995, Cell toxicity induced by inhibition of acyl coenzyme A cholesterol acyltransferase and accumulation of unesterified cholesterol, J. Biol. Chem. 270:5772–5778.

    PubMed  CAS  Google Scholar 

  • Wolfbauer, G., Glick, J. M., Minor, L. K., and Rothblat, G. H., 1986, Development of the smooth muscle foam cell:uptake of macrophage lipid inclusions, Proc. Natl. Acad. Sci. USA 83:1160–1164.

    Google Scholar 

  • Xu, X., and Tabas, I., 1991, Lipoprotein active acyl-coenzyme Axholesterol acyltransferase in macrophages only after cellular cholesterol pools are expanded to a critical threshold level, J. Biol. Chem. 266:17040–17048.

    PubMed  CAS  Google Scholar 

  • Yancey, P. G., and St. Clair, R. W., 1992, Cholesterol efflux is defective in macrophages from atherosclerosis-susceptible White Carneau pigeons ralative to resistant Show Racer pigeons, Arterioscler. Thromb. 12:1291–1304.

    PubMed  CAS  Google Scholar 

  • Yancey, P. G., and St. Clair, R. W., 1994, Mechanism of the defect in cholesteryl ester clearance from macrophages of atherosclerosis-susceptible White Carneau pigeons, J. Lipid Res. 35:2114–2129.

    PubMed  CAS  Google Scholar 

  • Yancey, P. G., Bielicki, J. K., Johnson, W. J., Lund-Katz, S., Palgunachari, M. N., Anantharamaiah, G. M., Segrest, J. P., Phillips, M. C., and Rothblat, G. H., 1995, The efflux of cellular cholesterol and phospholipid to lipid-free apolipoproteins and class A amphipathic peptides, Biochemistry 34:7955–7965.

    PubMed  CAS  Google Scholar 

  • Yau-Young, A. O., Rothblat, G. H., and Small, D. M., 1982, Mobilization of cholesterol from cholesterol ester enriched tissue culture cells by phospholipid dispersions, Biochim. Biophys. Acta 710:181–187.

    PubMed  CAS  Google Scholar 

  • Yeagle, P. L., 1985, Cholesterol and the cell membrane, Biochim. Biophys. Acta 822:267–287.

    PubMed  CAS  Google Scholar 

  • Yla-Herttuala, S., Palinski, W., Rosenfeld, M. E., Parathasarathy, S., Carew, T. E., Butler, S., Witztum, J. L., and Steinberg, D., 1989, Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man, J. Clin. Invest. 84:1086–1095.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, W.J., Phillips, M.C., Rothblat, G.H. (1997). Lipoproteins and Cellular Cholesterol Homeostasis. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics