Skip to main content

Has Nature Designed the Cholesterol Side Chain for Optimal Interaction with Phospholipids?

  • Chapter
Cholesterol

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

In view of the many roles played by cholesterol in membranes, it is not surprising that the interactions of cholesterol with phospholipids, and their consequences with respect to membrane structure and function, have been studied intensively for more than three decades. This chapter reviews recent studies on the importance of the isooctyl side chain of cholesterol on ordering of the acyl chains, as well as how variations in the alkyl side chain length affect the conformational order of fatty acyl chains of phospholipids in bilayer membranes and the molecular packing of phospholipids in monolayers. The discussion focuses on recent biophysical studies of liposomes and monolayers in which the alkyl chain length of the sterol and/or the acyl chain length of the phospholipid were varied. The results are interpreted according to the hydrophobic mismatch effect. Also reviewed in this chapter are some recent kinetic studies of intermembrane movement and intracellular transport of sterols having a side-chain structure different from that of cholesterol. For a recent review of other aspects of sterol-phospholipid interactions, including a more detailed discussion of the use of NMR spectroscopy to establish phase diagrams than are presented here, and an overview of differential interaction of cholesterol with subclasses of phospholipids, the reader is referred to Keough et al. (1996) and reference cited therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bittman, R., 1988, Sterol exchange between mycoplasma membranes and vesicles, in: Biology of Cholesterol (P. L. Yeagle, ed.), pp. 173–195, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bittman, R., 1993, A review of the the kinetics of cholesterol movement between donor and acceptor bilayer membranes, in: Cholesterol in Membrane Models (L. Finegold, ed.), pp. 45–65, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bittman, R., Clejan, S., Jain, M. K., Deroo, P. W., and Rosenthal, A. F., 1981, Effects of sterols on permeability and phase transitions of bilayers from phosphatidylcholines lacking acyl groups, Biochemistry 20:2790–2795.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, R., Clejan, S., Lund-Katz, S., and Phillips, M. C., 1984, Influence of cholesterol on bilayers of ester-and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements, Biochim. Biophys. Acta 772:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, K. E., 1977, Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis, Adv. Enzymol. 45:1–84.

    CAS  Google Scholar 

  • Bloch, K. E., 1983, Sterol structure and membrane function, Crit. Rev. Biochem. 14:47–92.

    Article  CAS  Google Scholar 

  • Borochov, N., Wachtel, E. J., and Bach, D., 1995, Phase behavior of mixtures of cholesterol and saturated phosphatidylglycerols, Chem. Phys. Lipids 76:85–92.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, T. O., Gerloczy, A., and Pitha, J., 1995, Safety of parenteral hydroxypropyl β-cyclodextrin, J. Pharm. Sci. 84:222–225.

    Article  PubMed  CAS  Google Scholar 

  • Chia, N.-C., Vilchèze, C., Bittman, R., and Mendelsohn, R., 1993, Interactions of cholesterol and synthetic sterols with phospholipids as deduced from infrared CH2 wagging progression intensities, J. Am. Chem. Soc. 115:12050–12055.

    Article  CAS  Google Scholar 

  • Claudy, P., Létoffé, J. M., Germain, P., Bastide, J. P., Bayol, A., Blasquez, S., Rao, R. C., and Gonzalez, B., 1991, Physicochemical characterization of cholesterol-beta cyclodextrin inclusion complexes, J. Thermal Anal. 37:2497–2506.

    Article  CAS  Google Scholar 

  • Clejan, S., and Bittman, R., 1984, Distribution and movement of sterols with different side-chain structures between the two leaflets of the membrane bilayer of mycoplasma cells, J. Biol. Chem. 259: 449–455.

    PubMed  CAS  Google Scholar 

  • Clejan, S., and Bittman, R., 1985, Rates of amphotericin B and filipin association with sterols. A study of changes in sterol structure and phospholipid composition of vesicles, J. Biol. Chem. 260: 2884–2889.

    PubMed  CAS  Google Scholar 

  • Clejan, S., Bittman, R., and Rottem, S., 1981, Effects of sterol structure and exogenous lipids on the transbilayer distribution of sterols in the membrane of Mycoplasma capricolum, Biochemistry 20: 2200–2204.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, C. E., Dahl, J. S., and Bloch, K., 1980a, Effect of alkyl-substituted precursors of cholesterol on artificial and natural membranes and on the viability of Mycoplasma capricolum, Biochemistry 19:1462–1467.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, C. E., Dahl, J. S., and Bloch, K., 1980b, Effects of cycloartenol and lanosterol in model membranes, Biochim. Biophys. Acta 733:111–116.

    Google Scholar 

  • Dahl, J., 1993, The role of cholesterol in mycoplasma membranes, in: Subcellular Biochemistry, Volume 20: Mycoplasma Cell Membranes (S. Rottem and I. Kahane, eds.), pp. 167–188, Springer Science+Business Media New York.

    Chapter  Google Scholar 

  • Dai, M. C., Chiche, H. B., Düzgünes, N., Ayanoglu, E., and Djerassi, C., 1991, Phospholipid studies of marine organisms. 26. Interactions of some marine sterols with 1-stearoyl-2-oleoyl-phosphatidylcholine (SOPC) in model membranes, Chem. Phys. Lipids 59:245–253.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J. H., 1993, The molecular dynamics, orientational order, and thermodynamic phase equilibria of cholesterol/phosphatidylcholine mixtures: 2H nuclear magnetic resonance, in: Cholesterol in Membrane Models (L. Finegold, ed.), pp. 67–135, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Duax, W. L., Wawrzak, Z., Griffin, J. F., and Cheer, C., 1988, Sterol conformation and molecular properties, in: Biology of Cholesterol (P. L. Yeagle, ed.), pp. 1–18, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Dufourc, E. J., Parish, E. J., Chitrakorn, S., and Smith, I. C. P., 1984, Structural and dynamical details of cholesterol-lipid interaction as revealed by deuterium NMR, Biochemistry 23:6062–6071.

    Article  CAS  Google Scholar 

  • Erickson, K. A., and Nes, W. R., 1982, Inhibition of hepatic cholesterol synthesis in mice by sterols with shortened and stereochemically varied side chains, Proc. Natl. Acad. Sci. USA 79:4873–4877.

    Article  PubMed  CAS  Google Scholar 

  • Favier, M.-L., Rémésy, C., Moundras, C., and Demigné, C., 1995, Effect of cyclodextrin on plasma lipids and cholesterol metabolism in the rat, Metab., Clin. Exp. 44:200–206.

    Article  CAS  Google Scholar 

  • Finean, J. B., 1990, Interaction between cholesterol and phospholipid in hydrated bilayers, Chem. Phys. Lipids 54:147–156.

    Article  CAS  Google Scholar 

  • Franks, N. P., 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayers. I. X-ray diffraction, J. Mol. Biol. 100: 345–358.

    Article  PubMed  CAS  Google Scholar 

  • Frijlink, H. W., Eissens, A. C., Hefting, N. R., Poelstra, K., Lerk, C. F., and Meijer, D. K. F., 1991, The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharm. Res. 8:9–16.

    Article  PubMed  CAS  Google Scholar 

  • Gericke, A., Brauner, J. W., Erukulla, R. K., Bittman, R., and Mendelsohn, R., 1996, In-situ investigation of partially deuterated fatty acid and phospholipid monolayers at the air/water interface by IR reflection-absorption spectroscopy, Thin Solid Films, 284-285:428–431.

    Article  CAS  Google Scholar 

  • Gimpl, G., Klein, U., Reiländer, H., and Fahrenholz, F., 1995, Expression of the human oxytocin receptor in baculovirus-infected insect cells: high-affinity binding is induced by a cholesterol-cyclodextrin complex, Biochemistry 34: 13794–13801.

    Article  PubMed  CAS  Google Scholar 

  • Guo, W., and Hamilton, J. A., 1995, A multinuclear solid-state NMR study of phospholipid-cholesterol interactions. Dipalmitoylphosphatidylcholine-cholesterol binary system. Biochemistry 34: 14174–14184.

    Article  PubMed  CAS  Google Scholar 

  • Higinbotham, J., Beswick, P. H., Malcolmson, R. J., Reed, D., Parkinson, J. A., and Sadler, I. H., 1993, 13C-NMR determination of the molecular dynamics of cholesterol in DMPC vesicles, Chem. Phys. Lipids 66:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.-H., 1977, A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes, Lipids 12:348–356.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T.-H., DeSiervo, A. J., and Yang, Q.-X., 1991, Effect of cholesterol and lanosterol on the structure and dynamics of the cell membrane of Mycoplasma capricolum. Deuterium nuclear magnetic resonance study, Biophys. J. 59:691–702.

    Article  PubMed  CAS  Google Scholar 

  • Kan, C-C., and Bittman, R., 1990, Constraint of the spontaneous intermembrane movement of sitosterol by its 24α-ethyl group, J. Am. Chem. Soc. 112:884–886.

    Article  CAS  Google Scholar 

  • Kan, C-C., and Bittman, R., 1991, Spontaneous rates of sitosterol and cholesterol exchange between phospholipid vesicles and between lysophosholipid dispersions: evidence that desorption rate is impeded by the 24α-ethyl group, J. Am. Chem. Soc. 113:6650–6656.

    Article  CAS  Google Scholar 

  • Kan, C-C., Yan, J., and Bittman, R., 1992, Rates of spontaneous exchange of sterols between lipid vesicles, Biochemistry 31:1866–1874.

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg, E., Blume, A., McElhaney, R. N., and Poralla, K., 1983, Sterols in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol, Biochemistry 19:1467–1472.

    Google Scholar 

  • Keough, K. M. W., Morrow, M. R., and Bittman, R., 1996, Phospholipid-cholesterol bilayers, in: Encyclopedia of Nuclear Magnetic Resonance (D. M. Grant and R. K. Harris, eds.), pp. 3601–3608, Wiley, Chichester, U. K.

    Google Scholar 

  • Kilsdonk, E. C., Yancey, G., Stoudt, G. W., Bangerter, F. W., Johnson, W. J., Phillips, M. C., and Rothblat, G. H., 1995, Cellular cholesterol efflux mediated by cyclodextrins, J. Biol. Chem. 270:17250–17256.

    Article  PubMed  CAS  Google Scholar 

  • Klein, U., Gimpl, G., and Fahrenholz, F., 1995, Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor, Biochemistry 34:13784–13793.

    Article  PubMed  CAS  Google Scholar 

  • Krajewski-Bertrand, M.-A., Milon, A., Nakatani, Y., and Ourisson, G., 1992, The interaction of various cholesterol “ancestors” with lipid membranes: a 2H-NMR study on oriented bilayers, Biochim. Biophys. Acta 1105:213–220.

    Article  PubMed  CAS  Google Scholar 

  • Laurent, S., Ivanova, M. G., Pioch, D., Graille, J., and Verger, R., 1994, Interactions between β-cyclodextrin and insoluble glyceride monomolecular films at the argon/water interface: application to lipase kinetics, Chem. Phys. Lipids 70:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Le Guernevé, C., and Auger, M., 1995, New approach to study fast and slow motions in lipid bilayers: Application to dimyristoylphosphatidylcholine—cholesterol interactions, Biophys. J. 68: 1952–1959.

    Article  PubMed  Google Scholar 

  • Lundberg, B., Svens, E., and Ekman, S., 1978, The hydration of phospholipids and phospholipid-cholesterol complexes, Chem. Phys. Lipids 22:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Mattjus, P., Bittman, R., Vilchèze, C., and Slotte, J. P., 1995, Lateral domain formation in cholesterol/phopsholipid monolayers as affected by the sterol side chain conformation, Biochim. Biophys. Acta 1240:237–247.

    Article  PubMed  Google Scholar 

  • Mattjus, P., Hedström, G., and Slotte, J. P., 1994, Monolayer interaction of cholesterol with phospholipids: effects of acyl chain length, Chem. Phys. Lipids 74:195–203.

    Article  CAS  Google Scholar 

  • Mcintosh, T. J., 1978, The effect of cholesterol on the structure of phosphatidylcholine bilayers, Biochim. Biophys. Acta 513:43–58.

    Article  PubMed  CAS  Google Scholar 

  • McMullen, T. P. W., and McElhaney, R. N., 1995, New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry, Biochim. Biophys. Acta 1234:90–98.

    Article  PubMed  Google Scholar 

  • McMullen, T. P. W., and McElhaney, R. N., 1996, Physical studies of cholesterol/phospholipid interactions, Curr. Opin. Colloid Interf. Sci. 1:83–90.

    Article  CAS  Google Scholar 

  • McMullen, T. P. W., and McElhaney, R. N., 1997, Differential scanning calorimetric studies of the interaction of cholesterol with phosphatidylethanolamines, Biophys. J., submitted.

    Google Scholar 

  • McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N., 1993, Differential scanning calorimetry study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines, Biochemistry 32:516–522.

    Article  PubMed  CAS  Google Scholar 

  • McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N., 1994, Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phospholipid bilayers, Biophys. J. 66:741–752.

    Article  PubMed  CAS  Google Scholar 

  • McMullen, T. P. W., Vilcheze, C., McElhaney, R. N., and Bittman, R., 1995, Differential scanning calorimetric study of the effect of sterol side chain length on dipalmitoylphosphatidylcholine thermotropic phase behavior, Biophys. J. 69:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, R., Davies, M. A., Brauner, J. W., Schuster, H. F., and Dluhy, R. A., 1989, Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy, Biochemistry 28:8934–8939.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, R., Davies, M. A., Schuster, H. F., Xu, Z., and Bittman, R., 1991, CD2 rocking modes as quantitative infrared probes of one-, two-, and three-bond conformational disorder in dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine/cholesterol mixtures, Biochemistry 30:8558–8563.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, B.-C., Tso, P., Phan, C. T., Beveridge, D. J., Wen, J., and Redgrave, T. G., 1995, Features of cholesterol struucture that regulate the clearance of chylomicron-like lipid emulsions, J. Lipid Res. 36:2038–2053.

    PubMed  CAS  Google Scholar 

  • Murari, R., Murari, M. P., and Baumann, W. J., 1986, Sterol orientations in phosphatidylcholine liposomes as determined by deuterium NMR, Biochemistry 25:1062–1067.

    Article  PubMed  CAS  Google Scholar 

  • Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., and Simons, K., 1995, VIP21/caveolin is a cholesterol-binding protein, Proc. Natl. Acad. Sci. USA 92:10339–10343.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani, Y., Irie, T., Uekama, K., Fukunaga, K., and Pitha, J., 1989, Differential effects of the α-, β-, and γ-cyclodextrins on human erythrocytes, Eur. J. Biochem. 186:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Ohvo, H., and Slotte, J. P., 1996, Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate, Biochemistry 35:8018–8024.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield, E., Meadows, M., Rice, D., and Jacobs, R., 1978, Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems, Biochemistry 17:2727–2740.

    Article  PubMed  CAS  Google Scholar 

  • Ourisson, G., and Rohmer, M., 1992, Hopanoids. 2. Biohopanoids a novel class of bacterial lipids, Acc. Chem. Res. 25:403–408.

    Article  CAS  Google Scholar 

  • Presti, F. T., 1985, The role of cholesterol in regulating membrane fluidity, in: Membrane Fluidity in Biology, Vol. 4, Cellular Aspects (R. C. Aloia and J. M. Boggs, eds.), pp. 97–146, Academic Press, New York.

    Google Scholar 

  • Presti, F. T., Pace, R. J., and Chan, S. I., 1982, Cholesterol-phospholipid interaction in membranes. 2. Stoichiometry and molecular packing of cholesterol-rich domains, Biochemistry 21: 3831–3835.

    Article  PubMed  CAS  Google Scholar 

  • Rawyler, A., and Siegenthaler, P. A., 1996, Cyclodextrins: a new tool for the controlled lipid depletion of thylakoid membranes, Biochim. Biophys. Acta 1278:89–97.

    Article  PubMed  Google Scholar 

  • Redgrave, T. G., Martins, I., Mortimer, B.-C, Vilcheze, C., and Bittman, R., 1997, in preparation.

    Google Scholar 

  • Reinl, H., Brumm, T., and Bayerl, T. M., 1992, Changes of the physical properties of the liquid-ordered phase with temperature in binary mixtures of DPPC with cholesterol. A 2H-NMR, FT-IR, DSC, and neutron scattering study, Biophys. J. 61:1025–1035.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, A. J., Richards, W. G., Thomas, P. J., and Hann, M. M., 1995, Behavior of cholesterol and its effect on head group and chain conformations in lipid bilayers: a molecular dynamics study, Biophys. J. 68:164–170.

    Article  PubMed  CAS  Google Scholar 

  • Rujanavech, C., and Silbert, D. F., 1986, LM cell growth and membrane lipid adaptation to sterol structure, J. Biol. Chem. 261:7196–7203.

    PubMed  CAS  Google Scholar 

  • Sankaram, M. B., and Thompson, T. E., 1990, Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study, Biochemistry 29:10676–10684.

    Article  PubMed  CAS  Google Scholar 

  • Sankaram, M. B., and Thompson, T. E., 1991, Cholesterol-induced fluid-phase immiscibility in membranes, Proc. Natl. Acad. Sci. USA 88:8686–8690.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Nishikawa, K., Aikawa, K., Mimura, K., Murakami-Murofushi, K., Arai, H., and Inoue, K., 1995, Side-chain structure is critical for the transport of sterols from lysosomes to cytoplasm, Biochim. Biophys. Acta 1257:38–46.

    Article  PubMed  Google Scholar 

  • Senak, L., Moore, D., and Mendelsohn, R., 1992, CH2 wagging progressions as IR probes of slightly disordered phospholipid acyl chain states, J. Phys. Chem. 96:2749–2754.

    Article  CAS  Google Scholar 

  • Shouffani, A., and Kanner, B. I., 1990, Cholesterol is required for the reconstitution of the sodium-and chloride-coupled, γ-aminobutyric acid transporter from rat brain, J. Biol. Chem. 265:6002–6008.

    PubMed  CAS  Google Scholar 

  • Slotte, J. P., and Mattjus, P., 1995, Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface—a comparative study with different reporter molecules, Biochim. Biophys. Acta 1254:22–29.

    Article  PubMed  Google Scholar 

  • Slotte, J. P., Junger, M., Vilchèze, C., and Bittman, R., 1994, Effect of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles, Biochim. Biophys. Acta 1190:435–443.

    Article  PubMed  CAS  Google Scholar 

  • Tavani, D. M., Nes, W. R., and Billheimer, J. T., 1982, The sterol substrate specificity of acyl CoA cholesterol acyltransferase from rat liver, J. Lipid Res. 23:774–781.

    PubMed  CAS  Google Scholar 

  • Ueno, A., Minato, S., Suzuki, I., Fukushima, M., Ohkubo, M., Osa, T., Hamada, F., and Murai, K., 1990, Host-guest sensory system of dansyl-modified β-cyclodextrin for detecting steroidal compounds by dansyl fluorescence, Chem. Lett. 605–608.

    Google Scholar 

  • Vanderkooi, G., 1994, Computation of mixed phosphatidylcholine-cholesterol bilayer structures by energy minimization, Biophys. J. 66: 1457–1468.

    Article  PubMed  CAS  Google Scholar 

  • Vermuri, R., and Philipson, K. D., 1989, Influence of sterols and phospholipids on sarcolemmal and sarcoplasmic reticular cation transporters, J. Biol. Chem. 264:8680–8685.

    Google Scholar 

  • Vilchèze, C., McMullen, T. P. W., McElhaney, R. N., and Bittman, R., 1996, The effect of side-chain analogues of cholesterol on the thermotropic phase behavior of 1-stearoyl-2-oleoyl-phosphatidylcholine bilayers: a differential scanning calorimetry study, Biochim. Biophys. Acta 1279:235–242.

    Article  PubMed  Google Scholar 

  • Villalaín, J., 1996, Location of cholesterol in model membranes by magic-angle-sample spinning NMR, Eur. J. Biochem. 241:585–593.

    Article  Google Scholar 

  • Vist, M. R., and Davis, J. H., 1990, Phase equilibria of cholesterol/DPPC mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry, Biochemistry 29:451–464.

    Article  PubMed  CAS  Google Scholar 

  • Worcester, D. L., and Franks, N., 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction, J. Mol. Biol. 100:359–378.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W.-G., and Chi, L.-M., 1991, Conformational change of cholesterol side chain in lipid bilayers, J. Am. Chem. Soc. 113:4683–4685.

    Article  CAS  Google Scholar 

  • Yeagle, P. L., 1988, Cholesterol and the cell membrane, in: Biology of Cholesterol (P. L. Yeagle, ed.), pp. 121–145, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Yeagle, P. L., Martin, R. B., Lala, A. K., Lin, H.-K., and Bloch, K., 1977, Differential effects of cholesterol and lanolesterol on artificial membranes, Proc. Natl Acad. Sci. USA 74:4924–4926.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bittman, R. (1997). Has Nature Designed the Cholesterol Side Chain for Optimal Interaction with Phospholipids?. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics