Skip to main content
Book cover

Cholesterol pp 89–116Cite as

Antifungal Sterol Biosynthesis Inhibitors

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

Herbal medicines and related drugs used to treat infective organisms were available in ancient cultures and detailed in the first pharmacopoeia reported in 1146 ad, titled “Antidotarium Niclai” (Grun, 1991). During the following millennium, there has been continued interest in drug discovery and application. However, only in the last fifty years have effective therapeutic agents for fungal disease been developed that exploit a fundamental difference between the biochemistry or physiology of the pathogens and their hosts. Sterol biosynthesis is one of the few areas of difference in primary metabolism between fungi and animals. Unlike animals that synthesize 24-desalkyl sterols, such as cholesterol (cholest-5-en-3β-ol), many pathogenic fungi synthesize 24-alkylsterols, such as ergosterol (24β-methyl cholesta-5,7,22-trien-3β-ol). The major difference in the two sterols stems structurally from the presence and nature of the 24-alkyl group.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, I., and Prestwich, G. D., 1994, Active-site mapping of affinity-labeled rat oxidosqualene cyclase, J. Biol. Chem. 269:802–804.

    PubMed  CAS  Google Scholar 

  • Abe, I., Tomesch, J. C., Wattanasin, S., and Prestwich, G. D., 1994, Inhibitors of squalene biosynthesis and metabolism, Nat. Prod. Rep. 11:279–302.

    Article  PubMed  CAS  Google Scholar 

  • Adler, J. H., Young, M., and Nes, W. R., 1977, Determination of the absolute configuration at C-20 and C-24 of ergosterol in Ascomycetes and Basdiomycetes by proton magnetic resonance spectroscopy, Lipids 12:364–366.

    Article  PubMed  CAS  Google Scholar 

  • Akhtar, M., and Jones, C., 1978, Some biological transformations involving unsaturated linkages: the importance of charge separation and neutralization in enzyme catalysis, Tetrahedron 34:813–832.

    Article  CAS  Google Scholar 

  • Akhtar, M., Hunt, P. F., and Parvez, M. A., 1967, The transfer of hydrogen from C-24 to C-25 in ergosterol biosynthesis, Biochem. J. 103:616–622.

    PubMed  CAS  Google Scholar 

  • Arigoni, D., 1978, Stereochemical studies of enzymic C-methylations, Ciba Found. Symp. 60: 243–261.

    CAS  Google Scholar 

  • Ator, M. A., Schmidt, S. J., Adams, J. L., and Dolle, R. E., 1989, Mechanism and inhibition of Δ24-sterol methyl transferase from Candida albicans and Candida tropicalis, Biochemistry 28: 9633–9640.

    Article  PubMed  CAS  Google Scholar 

  • Ator, M. A., Schmidt, S. J., Adams, J. L., Dolle, R. E., Kruse, L. L., Frey, C. L., and Barone, J. M., 1992, Synthesis, specificity, and antifungal activity of inhibitors of the Candida albicans Δ24-sterol methyl transferase, J. Med. Chem. 35:100–106.

    Article  PubMed  CAS  Google Scholar 

  • Balliano, G., Viola, E, Ceruti, M., and Cattel, L., 1988, Inhibition of sterol biosynthesis in Saccha-romyces cerevisae by N,N-diethylazasqualene and derivatives, Biochim. Biophys. Acta 959:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Bansal, S. R., and Knoche, H. W., 1981, Sterol methyl transferase from Uromyces phaseoli: an investigation of the first and second transmethylation reactions, Phytochemistry 20:1269–1277.

    Article  CAS  Google Scholar 

  • Bard, M., and Downing, J. F., 1981, Genetic and biochemical aspects of yeast sterol regulation involving 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Gen. Microbiol. 125:15–20.

    Google Scholar 

  • Berg, D., and Plempel, M. (eds.), 1988, Sterol Biosynthesis Inhibitors: Pharmaceutical and Agro-chemical Aspects, Ellis Horwood Ltd., Chichester, United Kingdom.

    Google Scholar 

  • Bloch, K. E., 1983, Sterol structure and membrane function, Crit. Rev. Biochem. 14:47–92.

    Article  CAS  Google Scholar 

  • Burden, R. S., Cooke, D. T., and Carter, G. F., 1989, Inhibitors of sterol biosynthesis and growth in plants and fungi, Phytochemistry 28:1791–1804.

    Article  CAS  Google Scholar 

  • Casey, W. M., Keesler, G. A., and Parks, L. W., 1992, Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae, J. Bacteriol. 174:7283–7288.

    PubMed  CAS  Google Scholar 

  • Castle, M., Blondin, G., and Nes, W. R., 1963, Evidence for the origin of the ethyl group of β-sitosterol, J. Am. Chem. Soc. 85:3306–3307.

    Article  CAS  Google Scholar 

  • Cornforth, J. W., 1968, Olefin alkylation in biosynthesis, Angew. Chem. Int. Ed. Engl. 7:903–911.

    Article  PubMed  Google Scholar 

  • Croteau, R., Alonso, W. R., Koepp, A. E., Shim, J. H., and Cane, D. E., 1993, Irreversible inactivation of monoterpene cyclase by a mechanism-based inhibitor, Arch. Biochem. Biophys. 307:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty, D. A., 1996, Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp, Science 271:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Dukes, M. N. G., 1980, Drugs affecting lipid metabolism, in: Myler’s Side Effects of Drugs, 9th edition, (G. S. Smith, ed.) pp. 727–737, Elsevier, Amsterdam.

    Google Scholar 

  • Fieser, L. F., and Fieser, M., 1959, Steroids, Reinhold, New York.

    Google Scholar 

  • Fusentani, N., 1988, Antifungal substances from marine invertebrates, Ann. New York Acad. Sci. 44:113–127.

    Article  Google Scholar 

  • Griffin, J. F., Nes, W. D., and Allinger, N. L., 1994, Evidence from crystallographic results and molecular mechanic calculations for the conformation of cycloartenol in membranes, INFORM 5:509 (A).

    Google Scholar 

  • Grun, B., 1991, The Timetables of History, 3rd revised edition, Simon & Schuster/Touchstone, New York.

    Google Scholar 

  • Guo, D., Jia, Z., and Nes, W. D., 1996a, Phytosterol biosynthesis: Isotope effects associated with biomethylation formation to 24-alkene sterol isomers, Tetrahedron Letts., 37:6823–6826.

    Article  CAS  Google Scholar 

  • Guo, D., Jia, Z., Zhou, W., and Nes, W. D., 1996b, Sterol biomethylation inhibitors of the (S)-adeno-syl-L-methionine: Δ24(25)-sterol methyl transferase from Saccharomyces cerevisiae, (submitted).

    Google Scholar 

  • Hamilton-Miller, J. M. T., 1974, Fungal sterols and the mode of action of the polyene antibiotics, Adv. Appl. Microbiol. 17:109–125.

    Article  PubMed  CAS  Google Scholar 

  • Hardwick, K. G., and Pelham, H. R. B., 1994, SED6 is identical to ERG6 and encodes putative methyl transferase required for ergosterol synthesis, Yeast 10:265–269.

    Article  PubMed  CAS  Google Scholar 

  • Haughan, P. A., Chance, M. L., and Goad, L. J., 1995, Effects of an azasterol inhibitor of sterol 24-transmethylation on sterol biosynthesis and growth of Leishmania donovani promastigotes, Biochem. J. 308:31–38.

    PubMed  CAS  Google Scholar 

  • Houston, J. B., Humphrey, M. J., Mathew, D. E., and Tarbit, M. H., 1988, Comparison of two azole antifungal drugs, ketoconazole and fluconazole, as modifiers of rat hepatic monooxygenase activity, Biochem. Pharmacol. 37:401–408.

    Article  PubMed  CAS  Google Scholar 

  • Hull, S. E., and Woolfsin, M. M., 1976, The crystal structure of ergosterol monohydrate, Acta Cryst. B32:2370–2373.

    CAS  Google Scholar 

  • Husselstein, D., Gachotte, D., Desprez, T., Bard, M., and Benveniste, P., 1996, Transformation of Saccharomyces cerevisiae with cDNA encoding a sterol methyl transferase from Arabadopsis thaliania results in synthesis of 24-ethyl sterols, FEBS Lett. 381:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, G. G., and Nes, W. D., 1992, Structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine: Δ24(25)-sterol methyl transferase. II. Inhibition by analogs of the transition state coordinate, J. Biol. Chem. 267:25856–25863.

    PubMed  CAS  Google Scholar 

  • Janssen, G. G., Kalinowska, M., Norton, R. A., and Nes, W. D., 1991, (S)-Adenosyl-L-methionine: Δ24-sterol methyl transferase: mechanism, enzymology, inhibitors, and physiological importance, in: Physiology and Biochemistry of Sterols (G. W. Patterson and W. D. Nes, eds.), pp. 83–117, Amer. Oil Chem. Soc. Press, Champaign, IL.

    Google Scholar 

  • Jia, Z., Zhou, W., Guo, D., and Nes, W. D., 1996, Synthesis of rationally designed mechanism-based inactivators of the (S)-adenosyl-L-methionine: Δ24(25)-sterol methyl transferase, Syn. Commun. 26:3841–3846.

    Article  CAS  Google Scholar 

  • Julia, M., and Marazano, C., 1985, Biomimetic methyl transfer to olefins, Tetrahedron 41:3717–3724.

    Article  CAS  Google Scholar 

  • Kawaguchi, A., 1970, Control of ergosterol biosynthesis in yeast, J. Biochem 67:219–227.

    PubMed  CAS  Google Scholar 

  • Loefler, R. S. T., Butters, J. A., and Hollomon, D. W., 1992, The sterol composition of powdery mildews, Phytochemistry 31:1561–1563.

    Article  Google Scholar 

  • McCammon, M. T., and Parks, L. W., 1981, Inhibition of sterol transmethylation by S-adenosylhomo-cysteine analogs, J. Bacteriol. 145:106–112.

    PubMed  CAS  Google Scholar 

  • Mercer, E. I., 1993, Inhibitors of sterol biosynthesis and their applications, Prog. Lipid Res. 32:357–416.

    Article  PubMed  CAS  Google Scholar 

  • Mihailovic, M. M, 1984, Biosynthesis of phytosterols in Trebouxia sp.: steric course of the C-alkylation step, pp. 1–140, ETH Dissertation No. 7535, Zürich.

    Google Scholar 

  • Moore, T. S., and Gaylor, J. L., 1970, Investigation of an S-adenosylmethionine: Δ24-sterol methyl transferase in ergosterol biosynthesis in yeast. II. Specificity of sterol substrates and inhibitors, J. Biol. Chem. 245:4684–4688.

    PubMed  CAS  Google Scholar 

  • Nes, W. D., 1987, Biosynthesis and requirement for sterols in the growth and reproduction of Oomycetes, Amer. Chem. Soc. Symp. Ser. 325:304–328.

    CAS  Google Scholar 

  • Nes, W. D., Benson, M., Lundin, R. E., and Le, P. H., 1988a, Conformational analysis of 9β,19-cyclopropyl sterols: detection of the pseudoplanar conformer by nuclear Overhauser effects and its functional implications, Proc. Natl. Acad. Sci. USA 85:5759–5763.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. D., Guo, D., and Lopez, M., 1997, Studies on the regulation of fungal growth and sterol metabolism by plant sterols and sterol methylation inhibitors, 1996, (in preparation).

    Google Scholar 

  • Nes, W. D., Hanners, P. K., and Parish, E. J., 1986, Control of fungal sterol C-24 transalkylation: importance to developmental regualtion, Biochem. Biophys. Res. Commun. 139:410–415.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. D., Heupel, R. C., and Le, P. H., 1985, Biosynthesis of ergosta-6(7),8(14),22(23)-trien-3β-ol by Gibberella fujikuroi: its importance to ergosterol’s metabolic pathway, J. Chem. Soc. Chem. Commun. 1431–1433.

    Google Scholar 

  • Nes, W. D., Janssen, G. G., and Bergenstrahle, A., 1991a, Structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine:Δ24(25)-sterol methyl transferase, J. Biol. Chem. 266:15202–15212.

    PubMed  CAS  Google Scholar 

  • Nes, W. D., Janssen, G. G., Crumley, F. G., Kalinowska, M., and Akihisa, T., 1993, The structural requirements of sterols for membrane function in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 300:724–733.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. D., Jia, Z., Koike, K., Nikaido, T., Sakamoto, Y., Guo, D., Griffin, J. F., Allinger, A. L., 1997b, Proof that cycloartenol and biogenetically related 9β,19-cyclopropyl sterols are conformationally flat in solution and the solid state, (in preparation).

    Google Scholar 

  • Nes, W. D., and Le, P. H., 1988, Regulation of sterol biosynthesis in Saprolegnia ferax by 25-azacholesterol, Pest. Biochem. Physiol. 30:87–94.

    Article  CAS  Google Scholar 

  • Nes, W. D., and Le, P. H., 1990, Evidence for separate intermediates in the biosynthesis of 24β-methylsterol end products by Gibberella fujikuroi, Biochim. Biophys. Acta 1042:119–125.

    Article  CAS  Google Scholar 

  • Nes, W. D., Norton, R. A., Crumley, F. G., Madigan, S. J., and Katz, E. R., 1990, Sterol phylogenesis and alga evolution, Proc. Natl. Acad. Sci. USA 87:7565–7569.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. D., and Parish, E. J., 1988, Metabolism of 2,3-epiminosqualene to 24,25-epiminolanosterol by Gibberella fujikuroi, Lipids 23:375–376.

    Article  CAS  Google Scholar 

  • Nes, W. D., and Venkatramesh, M., 1994, Molecular asymmetry and sterol evolution, Amer. Chem. Soc. Symp. Ser. 562:55–89.

    CAS  Google Scholar 

  • Nes, W., and Venkatramesh, M., 1996, Enzymology of phytosterol transformations, in: Biochemistry and Function of Sterols (E. J. Parish and W. D. Nes, eds.), pp. 111–122, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Nes, W. D., Wong, R. Y., Benson, M., and Akihisa, T., 1991b, Conformational analysis of 10α-cucurbitacin, J. Chem. Soc. Chem. Commun. 1272–1274.

    Google Scholar 

  • Nes, W. D., Xu, S., and Haddon, W. F., 1988b, Evidence for similarities and differences in the biosynthesis of fungal sterols, Steroids 53:533–538.

    Article  Google Scholar 

  • Nes, W. D., Xu, S., Parish, E. J., 1989, Metabolism of 24(R,S),25-epiminolanosterol to 25-aminolanosterol and lanosterol by Gibberella fujikuroi, Arch. Biochem. Biophys. 272:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. R., 1987, Structure-function relationships for sterols in Saccharomyces cerevisiae, Amer. Chem. Soc. Symp. Ser. 325:252–267.

    CAS  Google Scholar 

  • Nes, W. R., and Dhanuka, I. C., 1988, Inhibition of sterol synthesis by Δ5-sterols in a sterol auxotroph of yeast defective in oxidosqualene cyclase and cytochrome P-450, J. Biol. Chem. 263: 11844–11850.

    PubMed  CAS  Google Scholar 

  • Nes, W. R., and McKean, M. L., 1977, Biochemistry of Steroids and Other Isopentenoids, University Park Press, Baltimore.

    Google Scholar 

  • Nes, W. R., Sekula, B. C., Nes, W. D., and Adler, J. H., 1978, The functional importance of structural features of ergosterol in yeast, J. Biol. Chem. 253:6218–6225.

    PubMed  CAS  Google Scholar 

  • Oehlschlager, A. C., and Czyzewaska, E., 1992, Rationally designed inhibitors of sterol biosynthesis, in: Emerging Targets and Antifungal Therapy (J. Sutcliffe and N. H. Georgopapadakou, eds.), pp. 437–475, Routledge, Chapman & Hall Press, New York.

    Chapter  Google Scholar 

  • Oehlschlager, A. C., Angus, R. H., Pierce, A. M., Pierce, H. D., Jr., and Srinivasan, R., 1984, Azasterol inhibition of Δ24-sterol methyl transferase in Saccharomyces cerevisiae, Biochemistry 23: 582–358

    Article  Google Scholar 

  • Ourisson, G., 1994, Pecularities of sterol biosynthesis in plants, J. Plant Physiol. 243:434–439.

    Article  Google Scholar 

  • Parker, S. R., and Nes, W. D., 1992, Regulation of sterol biosynthesis and its phylogenetic implications, Amer. Chem. Soc. Symp. Ser. 497:110–145.

    CAS  Google Scholar 

  • Parks, L. W., 1978, Metabolism of sterols in yeast, CRC Crit. Rev. Microbiol. 6:301–341.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, W. J., and Nes, W. R., 1983, Stereochemical specificity for sterols in Saccharomyces cerevisiae, J. Biol. Chem. 258:4472–4476.

    PubMed  CAS  Google Scholar 

  • Pinto, W. J., Lozano, R., and Nes, W. R., 1986, Inhibition of sterol biosynthesis by ergosterol and cholesterol in Saccharomyces cerevisiae, Biochim. Biophys. Acta 826:89–95.

    Google Scholar 

  • Popják, G., Edmond, J., Anet, F. A. L., and Easton, N. R., Jr., 1977, Carbon-13 NMR studies on cholesterol biosynthesized from [13C]mevalonates, J. Am. Chem. Soc. 99:931–935.

    Article  PubMed  Google Scholar 

  • Popják, G., Meenan, A., Parish, E. J., and Nes, W. D., 1989, Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparanol in cultured rat hepatoma cells, J. Biol. Chem. 264:6230–6238.

    PubMed  Google Scholar 

  • Raederstorff, D., and Rohmer, M., 1987, Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi, Eur. J. Biochem. 164:427–434.

    Article  PubMed  CAS  Google Scholar 

  • Rahier, A., Génot, J-C, Schuber, F., Benveniste, P., and Narula, A. S., 1984, Inhibition of 5-adenosyl-l-methionine sterol-C-24-methyltransferase by analogues of a carbocationic ion high-energy intermediate, J. Biol. Chem. 259:15215–15223.

    PubMed  CAS  Google Scholar 

  • Rahier, A., Taton, M., Bouvier-Navé, P., Schmitt, P., Benveniste, P., Schuber, F., Narula, A.S., Cattel, L., Anding, C., and Place, P., 1986, Design of high energy intermediate analogues to study sterol biosynthesis in higher plants, Lipids 21:52–62.

    Article  CAS  Google Scholar 

  • Rahman, M. D., and Pascal, R. A., Jr., 1990, Inhibitors of ergosterol biosynthesis and growth of the trypanosmatid protozoan Crithida fasciculata, J. Biol. Chem. 265:4986–4996.

    Google Scholar 

  • Roddick, J. G., 1987, Antifungal activity of plant steroids, Amer. Chem. Soc. Symp. Ser. 325:286–303.

    CAS  Google Scholar 

  • Rosenblum, E. R., Malloy, J. M., McManus, I. R., Naworal, J. D., and Campbell, I. M., 1979, Effect of 20, 25-diazacholesterol on viability and steroid synthesis capability of cultured chick embryo pectoral muscle cells, Biochem. Biophys. Res. Commun. 88:1105–1110.

    Article  PubMed  CAS  Google Scholar 

  • Ryder, N. S., 1988, Mechanism of action and biochemical selectivity of allylamine antimycotic agents, in: Antifungal Drugs (V. St. Georgiev, ed.), Ann. New York Acad. Sci. 544:208–220.

    Google Scholar 

  • Shi, J., Gonzales, R. A., and Bhattacharyya, M. K. Identification and characterization of an S-adenosyl-L-methionine: Δ24-sterol-C-methyl transferase cDNA from soybean, 1996, J. Biol. Chem., 271:9384–9389.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, S., Kawashima, H., Wada, M., and Yamada, H., 1992, Occurrence of a novel 24,25-methyl-enecholest-5-en-3β-ol in Mortierela alpina 1S-4, Lipids 27:481–483.

    Article  CAS  Google Scholar 

  • St. Georgiev, V. (ed.), 1988, Antifungal Drugs, Volume 544, Annals of the New York Academy of Sciences, Ann. New York Acad. Sci., New York.

    Google Scholar 

  • Taylor, F. R., and Parks, L. W., 1981, An assessment of the specificity of sterol uptake and esterifi-cation in Saccharomyces cerevisiae, J. Biol. Chem. 256:13048–13054.

    PubMed  CAS  Google Scholar 

  • Venkatramesh, M., and Nes, W. D., 1995, Novel sterol transformations promoted by Saccharomyces cervevisiae strain GL7: evidence for 9β,19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols, Arch. Biochem. Biophys. 324:189–199.

    Article  PubMed  CAS  Google Scholar 

  • Venkatramesh, M., Guo, D., Harman, J. G., and Nes, W. D., 1996a, Sterol specificity of the Saccharomyces cerevisiae ERG6 gene product expressed in Escherichia coli, Lipids 31:373–377.

    Article  PubMed  CAS  Google Scholar 

  • Venkatramesh, M., Guo, D., Jia, Z., Nes, W. D., 1996b, Mechanism and structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine: Δ24(25)-sterol methyltransferase from Saccharomyces cerevisiae, Biochim. Biophys. Acta 1299:313–324.

    Article  PubMed  Google Scholar 

  • Viola, F., Brusa, P., Balliano, G., Ceruti, M., Boutaud, O., Schuber, F., and Cattel, L., 1995, Inhibition of 2,3-oxidosqualene cyclase and sterol biosynthesis by 10-and 19-azasqualene derivatives, Biochem. Pharmacol. 50:787–796.

    Article  PubMed  CAS  Google Scholar 

  • Weete, J. D., 1987, Mechanism of fungal growth suppression by inhibitors of ergosterol biosynthesis, Amer. Chem. Soc. Symp. Ser. 325:268–285.

    CAS  Google Scholar 

  • Yoshida, K., Hirose, Y., Imai, Y., and Kondo, T., 1989, Conformational analysis of cycloartenol, 24-methylenecycloartanol and their derivatives, Agric. Biol. Chem. 53:1901–1912.

    Article  CAS  Google Scholar 

  • Zhou, W., Guo, D., and Nes, W. D., 1996, Stereochemistry of hydrogen migration from C-24 to C-25 during biomethylation in ergosterol biosynthesis, Tetrahedron Lett. 37:1339–1342.

    Article  CAS  Google Scholar 

  • Zisner, E., Paltauf, F., and Daum, G., 1993, Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism, J. Bacteriol. 175:2853–2858.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guo, Da. et al. (1997). Antifungal Sterol Biosynthesis Inhibitors. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics